

1409 Hammond Ave. Suite 110 Superior, Wisconsin 54880 Telephone 715 395 5680 Facsimile 715 395 5681 www.nrecompany.com

January 21, 2010

Mr. Karl F. Beaster, P.G. Environmental Analyst, Liquids Pipelines Environment Enbridge Energy 119 North 25th Street East Superior, Wisconsin 54880

RE: Status Update/Groundwater Monitoring Report; Enbridge's South Cass Lake Pumping Station, Cass Lake, Minnesota

Dear Karl:

This letter report documents groundwater monitoring activities conducted for the above referenced site in June and October 2009. Figure 1 shows the site location, and Figure 2 depicts the layout of the station, property boundaries, and monitoring well network (from hereon simply referred to as the "Site"). In addition to the Enbridge wells, four USGS wells were incorporated into the monitoring network in October 2009.

2009 Activities:

During each 2009 sampling event, static water level and, where present, crude oil (non-aqueous phase) thickness measurements were collected from the monitoring wells associated with the Site. In June 2009, groundwater samples were collected from Enbridge monitoring wells free of crude oil (MW-1, MW-2, MW-4, MW-6, MW-7, MW-8, MW-9, and MW-10) and submitted for laboratory analysis of BTEX and ERDRO concentrations. Monitoring wells MW-14 and MW-15 are not part of the Sampling Plan. Monitoring well construction specifics are included in Appendix A. In October 2009, four USGS monitoring wells (USGS 1-A, USGS 2-A, USGS 3-A, and USGS 4-A) were incorporated into the Sampling Plan along with the Enbridge monitoring wells. Groundwater samples collected in the fall of 2009 were submitted for laboratory analysis of BTEX, ERDRO, nitrate, sulfate, methane, and iron concentrations. Dissolved oxygen measurements were also collected from wells free of crude oil during the October 2009 sampling event. The Sampling Plan (locations, frequency, parameters) was developed in consultation with Enbridge's Environment Department. During pipeline construction activities in the area in 2009, monitoring wells MW-2 and MW-14 were abandoned prior to the October 2009 sampling event.

In August 2009, the locations of monitoring wells associated with the site (Enbridge and USGS wells) were surveyed and tied into a common benchmark. In addition, property to the south of the station owned by Enbridge was surveyed to establish property boundaries.

Aquifer Hydraulics:

Prior to purging and sample collection activities, depth to groundwater measurements were collected. A comprehensive summary of groundwater elevation data is included in Table 1. Figure 3 depicts the groundwater flow regime as observed during the most recent sampling event (October 2009). Locally, the piezometric surface and distribution of compounds dissolved in the groundwater indicated groundwater flows under unconfined conditions with a southeast to east flow direction. Regionally, groundwater flow is to the southeast toward Fox Creek (part of the Pike Bay drainage), a local sink for shallow groundwater flow.

Dissolved Phase:

Organic carbon content (TOC) in the aquifer matrix was previously analyzed from a soil sample collected at the upgradient well location (MW-1). The TOC concentration from this sample was 920 mg/kg (0.09%). The hydraulic conductivity appears to be log-normally distributed about a geometric mean of 32 feet/day and the hydraulic gradient is approximately 0.04%. Assuming an effective porosity typical of clean sand (0.25), the mean groundwater flow velocity was calculated at approximately 20 feet per year.

The velocity of crude oil and benzene were also evaluated. Benzene was chosen since this compound typically is the first to arrive on the downgradient edge of the groundwater plume and is the primary compound of concern. Assuming a kinematic viscosity of 500 cSt at 5 C (the approximate temperature of the groundwater), the velocity of crude oil in the source area is approximately 0.5 ft/year. The velocity of the benzene front is approximately 12 ft/yr (retarded by a factor of 1.59). Note that other loss mechanisms limit the migration of the plume, which the USGS states to be stable. These calculations were included in a *Status Update/Feasibility Report* that was submitted to the Minnesota Pollution Control Agency (MPCA) in May 2004.

Non-Aqueous Phase Liquid:

Crude oil thickness measurements were collected with an oil/water interface probe from monitoring wells MW-3, MW-5, MW-11 and MW-13. Table 1 provides a comprehensive summary of the crude oil thickness observed on the water table. During the most recent sampling event in October 2009, the crude oil thickness ranged from a sheen at monitoring well MW-3 to 0.35 feet at monitoring well MW-11. Figure 4 depicts the approximate lateral extent of crude oil observed on the water table at the Site. As discussed in the May 2004 submittal to the MPCA, the crude oil characteristics showed a wide range of viscosities ranging from 23 centistokes (cSt) at MW-13 to 421 cSt at MW-5 (both measured at 10°C).

During the June and October 2009 sampling events, crude oil was recovered with a disposable bailer from monitoring wells MW-3, MW-5, MW-11, and MW-13 and placed in a drum located on-site. Between the two sampling events in 2009, approximately two pints of crude oil (0.25 gallons) were recovered.

Groundwater Quality:

Excluding wells containing crude oil, five monitoring wells at the Site (MW-10, USGS-1A, USGS-2A, USGS-3A, and USGS-4A) contained dissolved concentrations of crude oil related compounds in October 2009. At these locations, benzene has been the only volatile organic compound detected at concentrations above the Minnesota Department of Health Health Risk Limit (HRL) of $10 \mu g/L$. During the most recent sampling event in October 2009, the highest benzene concentration was detected at monitoring well USGS-1A (776 $\mu g/L$). Figure 5 depicts the approximate lateral extent of dissolved phase benzene in the groundwater in exceedance of the HRL of $10 \mu g/L$ (based on October 2009 analytical data).

ERDRO concentrations at the Site ranged from below the laboratory detection limit to 50.8 mg/L at MW-10 in June 2009. In October 2009, ERDRO concentrations at the Site ranged from below the laboratory detection limit to 22.4 mg/L at MW-10.

Monitoring wells free of crude oil (except monitoring well MW-15) were also submitted for laboratory analysis of nitrate, sulfate, methane, and iron concentrations during the October 2009 sampling event in an ongoing effort to evaluate the process of natural attenuation. To further evaluate the occurrence of natural attenuation, dissolved oxygen concentrations in the groundwater were measured in the field from each monitoring well not containing crude oil. The availability of dissolved oxygen in upgradient wells and along the peripheral edge of the plume indicates an aerobic environment. In the source area, dissolved oxygen readings were lower, averaging approximately 2.3 mg/L. Given these conditions, active biodegradation within the contaminant plume is

Natural Resources Engineering Company

occurring under aerobic conditions. Tables 2 and 3 provide a comprehensive summary of laboratory analytical data collected at the Site to date. The complete analytical laboratory reports for the June and October 2009 sampling events are included in Appendix B.

Recommendations:

To further evaluate dissolved phase contaminant trends as well as the process of natural attenuation, groundwater monitoring will continue to be conducted on a semi-annual basis in June and October 2010. Activities conducted on-site will be consistent with previous groundwater sampling events. In summer 2010, MW-2 will be reinstalled. Based on the location of MW-14, this well does not appear to be beneficial to future activities and therefore is not proposed to be reinstalled. The current monitoring well network does not provide a clean downgradient monitoring point(s). Upon review of the groundwater analytical data collected in 2009 in conjunction with the USGS's report for this Site, Enbridge will evaluate the necessity of additional monitoring wells to supplement the current monitoring well network.

Please do not hesitate to call me if you have any comments or questions – I can be reached at (715) 399-3250.

Sincerely,

Barry Power, P.E.

President

TABLES

Table 1: Groundwater Elevations/Crude Oil Thickness Measurements Enbridge Energy, Limited Partnership - South Cass Lake Station

			Top of Inner Casing Elevation	Depth to Groundwater	Depth to Oil	Oil Thickness	Equivalent Depth to Groundwater	Groundwater Elevation	Top of Screen	Top of Screen Above Groundwater
Well ID	Unique Well No.	Date	(feet NGVD)	(feet)	(feet)	(feet)	(feet)	(feet NGVD)	(feet NGVD)	(feet)
MW-1	662109	06-Jun-01	100.00	26.29				73.71	77.00	3.29
141 44 - 1	002107	10-May-02	100.00	27.57				72.43	77.00	4.57
		14-May-02	100.00	27.60				72.40	77.00	4.60
		21-Jul-03	100.00	28.07				71.93	77.00	5.07
		06-Jan-04	100.00	28.50				71.50	77.00	5.50
		02-Apr-04	100.00	28.53				71.47	77.00	5.53
		12-May-04	100.00	28.55				71.45	77.00	5.55
		26-Aug-04	100.00	27.97				72.03	77.00	4.97
		30-Dec-04	100.00	27.00				73.00	77.00	4.00
		06-Apr-05	100.00	27.35				72.65	77.00	4.35
		26-Jun-08	100.00	27.33				72.67	77.00	4.33
		25-Nov-08	100.00	27.22				72.78	77.00	4.22
		04-Jun-09	100.00	26.75				73.25	77.00	3.75
		26-Oct-09	1340.19	27.25				1312.94	1317.19	4.25
MW 2	((2)110	06 I 01	00.57	25.07				72.70	77.07	2.27
MW-2	662110	06-Jun-01 10-May-02	99.57	25.87 None Recorded				73.70	77.07	3.37
		14-May-02		27.25				72.32	77.07	4.75
		21-Jul-03		27.71				71.86	77.07	5.21
		06-Jan-04		28.12				71.45	77.07	5.62
		02-Apr-04		28.11				71.46	77.07	5.61
		12-May-04		28.28				71.29	77.07	5.78
		26-Aug-04		27.60				71.97	77.07	5.10
		30-Dec-04		26.62				72.95	77.07	4.12
		06-Apr-05		26.92				72.65	77.07	4.42
		26-Jun-08		27.13				72.44	77.07	4.63
		25-Nov-08		26.86				72.71	77.07	4.36
		04-Jun-09		26.52				73.05	77.07	4.02
WELL ABAN	NDONED									
MW-3	662111	06-Jun-01	99.60	25.92	25.32	0.60	25.37	74.23	79 10	3.87
IVI VV -3	002111	10-May-02	99.00	27.19	26.51	0.68		73.03	78.10 78.10	5.07
		14-May-02		27.19	26.6	0.62	26.57 26.66	73.03 72.94	78.10	5.16
		21-Jul-03		28.30	27.77	0.53	27.82	71.78	78.10	6.32
		5-Jan-04		29.12	28.05	1.07	28.15	71.78	78.10	6.65
		2-Apr-04		28.77	28.09	0.68	28.15	71.45	78.10	6.65
		12-May-04		29.15	28.2	0.95	28.29	71.31	78.10	6.79
		26-Aug-04		28.05	27.62	0.43	27.66	71.94	78.10	6.16
		30-Dec-04		26.99	26.7	0.29	26.73	72.87	78.10	5.23
		06-Apr-05		27.51	26.97	0.54	27.02	72.58	78.10	5.52
		26-Jun-08		27.29	27.15	0.14	27.16	72.44	78.10	5.66
		25-Nov-08		27.10	26.87	0.23	26.89	72.71	78.10	5.39
		06-Feb-09		27.92	27.67	0.25	27.69	71.91	78.10	6.19
		04-Jun-09		26.57	26.56	0.01	26.56	73.04	78.10	5.06
		26-Oct-09	1339.79	26.92	26.91	0.01	26.91	1312.88	1318.29	5.41
MW-4	662112	06-Jun-01	100.39	26.68				73.71	77.89	4.18
		10-May-02 14-May-02		27.92 27.96				72.47 72.43	77.89 77.89	5.42 5.46
		21-Jul-03		28.35				72.43	77.89	5.85
		06-Jan-04		28.75				71.64	77.89	6.25
				28.80						
		02-Apr-04 12-May-04		28.85				71.59 71.54	77.89 77.89	6.30 6.35
		26-Aug-04		28.22				72.17	77.89	5.72
		30-Dec-04		27.36				73.03	77.89	4.86
		06-Apr-05		27.71				72.68	77.89	5.21
		26-Jun-08		27.76				72.63	77.89	5.26
		25-Nov-08		27.56				72.83	77.89	5.06
		04-Jun-09		27.21				73.18	77.89	4.71
		26-Oct-09	1340.58	27.59				1312.99	1318.08	5.09
MW-5	705515	05-Jan-04	99.58	29.65	28.18	1.47	28.27	71.31	76.08	4.77
		2-Apr-04		29.72	28.47	1.25	28.55	71.03	76.08	5.05
		12-May-04		29.75	28.14	1.61	28.24	71.34	76.08	4.74
		26-Aug-04		28.05	27.6	0.45	27.63	71.95	76.08	4.13
		30-Dec-04		27.20	26.65	0.55	26.68	72.90	76.08	3.18
		06-Apr-05		28.03	26.94	1.09	27.01	72.57	76.08	3.51
		26-Jun-08		28.05	27.1	0.95	27.16	72.42 72.66	76.08	3.66
		25-Nov-08 06-Feb-09		27.17 28.90	26.9 28.56	0.27 0.34	26.92 28.58	72.66 71.00	76.08 76.08	3.42 5.08
		06-Feb-09 04-Jun-09		26.82	26.56	0.34	28.58 26.58	73.00	76.08 76.08	3.08
		26-Oct-09	1339.78	27.11	26.9	0.20	26.91	1312.87	1316.28	3.41
		20-001-07	1337.10	27.11	20.7	0.21	20.71	1312.0/	1310.20	3.71

Table 1: Groundwater Elevations/Crude Oil Thickness Measurements Enbridge Energy, Limited Partnership - South Cass Lake Station

			Top of Inner Casing Elevation	Depth to Groundwater	Depth to Oil	Oil Thickness	Equivalent Depth to Groundwater	Groundwater Elevation	Top of Screen	Top of Screen Above Groundwater
Well ID	Unique Well No.	Date	(feet NGVD)	(feet)	(feet)	(feet)	(feet)	(feet NGVD)	(feet NGVD)	(feet)
MW-6	680691	21-Jul-03	100.71	28.75				71.96	72.71	0.75
		06-Jan-04		29.05				71.66	72.71	1.05
		02-Apr-04		29.15				71.56	72.71	1.15
		12-May-04		29.15				71.56	72.71	1.15
		26-Aug-04		28.62				72.09	72.71	0.62
		30-Dec-04		27.76				72.95	72.71	-0.24
		06-Apr-05		28.09				72.62	72.71	0.09
		26-Jun-08		28.17				72.54	72.71	0.17
		25-Nov-08		28.43				72.28	72.71	0.43
		04-Jun-09		27.60				73.11	72.71	-0.40
		26-Oct-09	1340.90	27.98				1312.92	1311.90	-1.02
MW-7	680692	21-Jul-03	99.83	28.09				71.74	73.33	1.59
		06-Jan-04		28.34				71.49	73.33	1.84
		02-Apr-04		28.43				71.40	73.33	1.93
		12-May-04		28.46				71.37	73.33	1.96
		26-Aug-04		28.00				71.83	73.33	1.50
		30-Dec-04		27.05				72.78	73.33	0.55
		06-Apr-05		27.34				72.49	73.33	0.84
		26-Jun-08		27.15				72.68	73.33	0.65
		25-Nov-08		27.28				72.55	73.33	0.78
		04-Jun-09		26.87				72.96	73.33	0.37
		26-Oct-09	1340.03	27.24				1312.79	1313.53	0.74
MW-8	680693	21-Jul-03	101.00	29.37				71.63	74.50	2.87
IVI VV -0	080093		101.00							
		06-Jan-04		29.70				71.30	74.50	3.20
		02-Apr-04		29.77				71.23	74.50	3.27
		12-May-04		29.85				71.15	74.50	3.35
		26-Aug-04		29.21				71.79	74.50	2.71
		30-Dec-04		28.20				72.80	74.50	1.70
		06-Apr-05		28.54				72.46	74.50	2.04
		26-Jun-08		28.73				72.27	74.50	2.23
		25-Nov-08		28.45				72.55	74.50	1.95
		04-Jun-09 26-Oct-09	1341.21	28.09 28.45				72.91 1312.76	74.50 1315.16	1.59 2.40
MW-9	680694	21-Jul-03	98.25	26.41				71.84	73.75	1.91
		21-Jul-03		26.79				71.46	73.75	2.29
		02-Apr-04		26.81				71.44	73.75	2.31
		12-May-04		26.91				71.34	73.75	2.41
		26-Aug-04		26.29				71.96	73.75	1.79
		30-Dec-04		25.35				72.90	73.75	0.85
		06-Apr-05		25.65				72.60	73.75	1.15
		26-Jun-08		25.83				72.42	73.75	1.33
		25-Nov-08		25.57				72.68	73.75	1.07
		04-Jun-09		25.22				73.03	73.75	0.72
		26-Oct-09	1338.45	25.59				1312.86	1314.38	1.52
MW-10	705513	05-Jan-04	99.66	28.38				71.28	77.16	5.88
		2-Apr-04		28.30				71.36	77.16	5.80
		12-May-04		28.36				71.30	77.16	5.86
		26-Aug-04		27.76				71.90	77.16	5.26
		30-Dec-04		27.72				71.94	77.16	5.22
		06-Apr-05		27.02				72.64	77.16	4.52
		26-Jun-08		27.20				72.46	77.16	4.70
		25-Nov-08		26.94				72.72	77.16	4.44
		04-Jun-09		26.61				73.05	77.16	4.11
		26-Oct-09	1339.87	26.96				1312.91	1317.87	4.96
MW-11	705514	17 Dec 04	99.99	29.66	20.5	0.16	20.51	71.49	76.40	5.01
1V1 VV - 1 1	/03314	17-Dec-04 05-Jan-04	77.77	28.66 29.70	28.5 28.49	0.16 1.21	28.51 28.60	71.48 71.39	76.49 76.49	5.01 5.10
		2-Apr-04		29.78	28.45	1.33	28.57	71.42	76.49 76.40	5.07
		12-May-04		29.75	28.5	1.25	28.61	71.38	76.49 76.40	5.11
		26-Aug-04		28.68	27.94	0.74	28.01	71.98	76.49	4.51
		30-Dec-04		27.60	27.06	0.54	27.11	72.88	76.49	3.61
		06-Apr-05		28.07	27.38	0.69	27.44	72.55	76.49	3.94
		26-Jun-08		27.79	27.58	0.21	27.60	72.39	76.49	4.10
		25-Nov-08		27.59	27.28	0.31	27.31	72.68	76.49	3.81
		29-Jan-09		28.20	27.32	0.88	27.40	72.59	76.49	3.90
		06-Feb-09		28.28	27.53	0.75	27.60	72.39	76.49	4.10
		04-Jun-09		27.13	26.95	0.18	26.97	73.02	76.49	3.47
		26-Oct-09	1340.18	27.65	27.3	0.35	27.33	1312.85	1316.68	3.83

Table 1: Groundwater Elevations/Crude Oil Thickness Measurements Enbridge Energy, Limited Partnership - South Cass Lake Station

Well ID	Unique Well No.	Date	Top of Inner Casing Elevation (feet NGVD)	Depth to Groundwater (feet)	Depth to Oil (feet)	Oil Thickness (feet)	Equivalent Depth to Groundwater (feet)	Groundwater Elevation (feet NGVD)	Top of Screen (feet NGVD)	Top of Screen Above Groundwater (feet)
MW-13	705516	05-Jan-04	101.02	29.92	29.52	0.40	29.58	71.44	74.52	3.08
MW-13	/05516	05-Jan-04 2-Apr-04	101.02	30.57	29.52	1.04	29.58	71.34	74.52 74.52	3.18
		12-May-04		31.22	29.59	1.63	29.83	71.19	74.52	3.33
		26-Aug-04		29.20	29.07	0.13	29.09	71.93	74.52	2.59
		30-Dec-04		28.20	28.11	0.13	28.12	72.90	74.52	1.62
		06-Apr-05		28.80	28.38	0.42	28.44	72.58	74.52	1.94
		26-Jun-08		28.70	28.62	0.08	28.63	72.39	74.52	2.13
		25-Nov-08		28.35	28.35	0.00	28.35	72.67	74.52	1.85
		06-Feb-09		28.62	28.61	0.01	28.61	72.41	74.52	2.11
		04-Jun-09		28.01	28.01	0.00	28.01	73.01	74.52	1.51
		26-Oct-09	1341.23	28.42	28.35	0.07	28.36	1312.87	1314.73	1.86
MW-14		26-Jun-08	98.73	26.93				71.80		
		25-Nov-08		25.99				72.74		
		04-Jun-09		26.31				72.42		
WELL ABAN	NDONED									
MW-15		26-Jun-08	99.35	26.27				73.08		
		25-Nov-08		26.66				72.69		
		04-Jun-09		25.64				73.71		
		26-Oct-09	1339.61	26.70				1312.91		
USGS 1A		26-Oct-09	1341.60	28.78				1312.82	1312.60	-0.22
USGS 2A		26-Oct-09	1342.37	29.60				1312.77	1311.97	-0.80
USGS 3A		26-Oct-09	1341.26	28.54				1312.72	1311.92	-0.80
USGS 4A		26-Oct-09	1339.63	26.95				1312.68	1311.49	-1.19

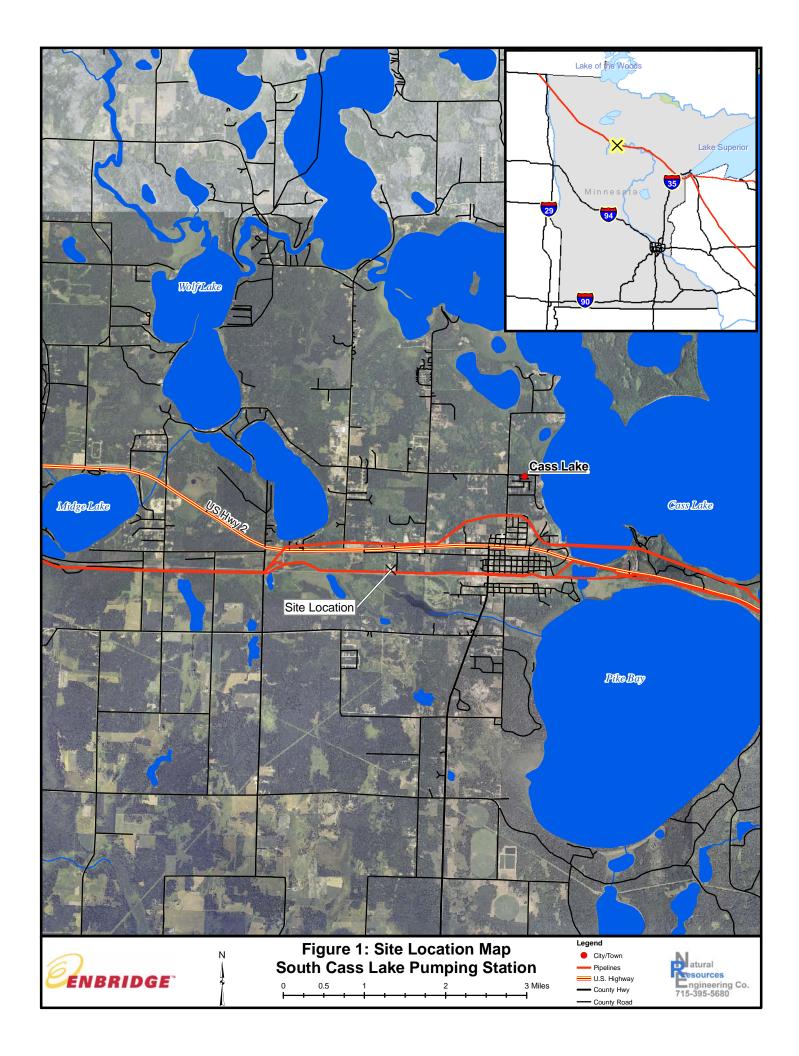
^{*} Note: A re-survey was conducted in August 2009 to tie in the Enbridge and USGS monitoring wells to a common benchmark. Prior to that, top of casing elevations were based on an assumed inner casing elevation of 100.00 at monitoring well MW-1.

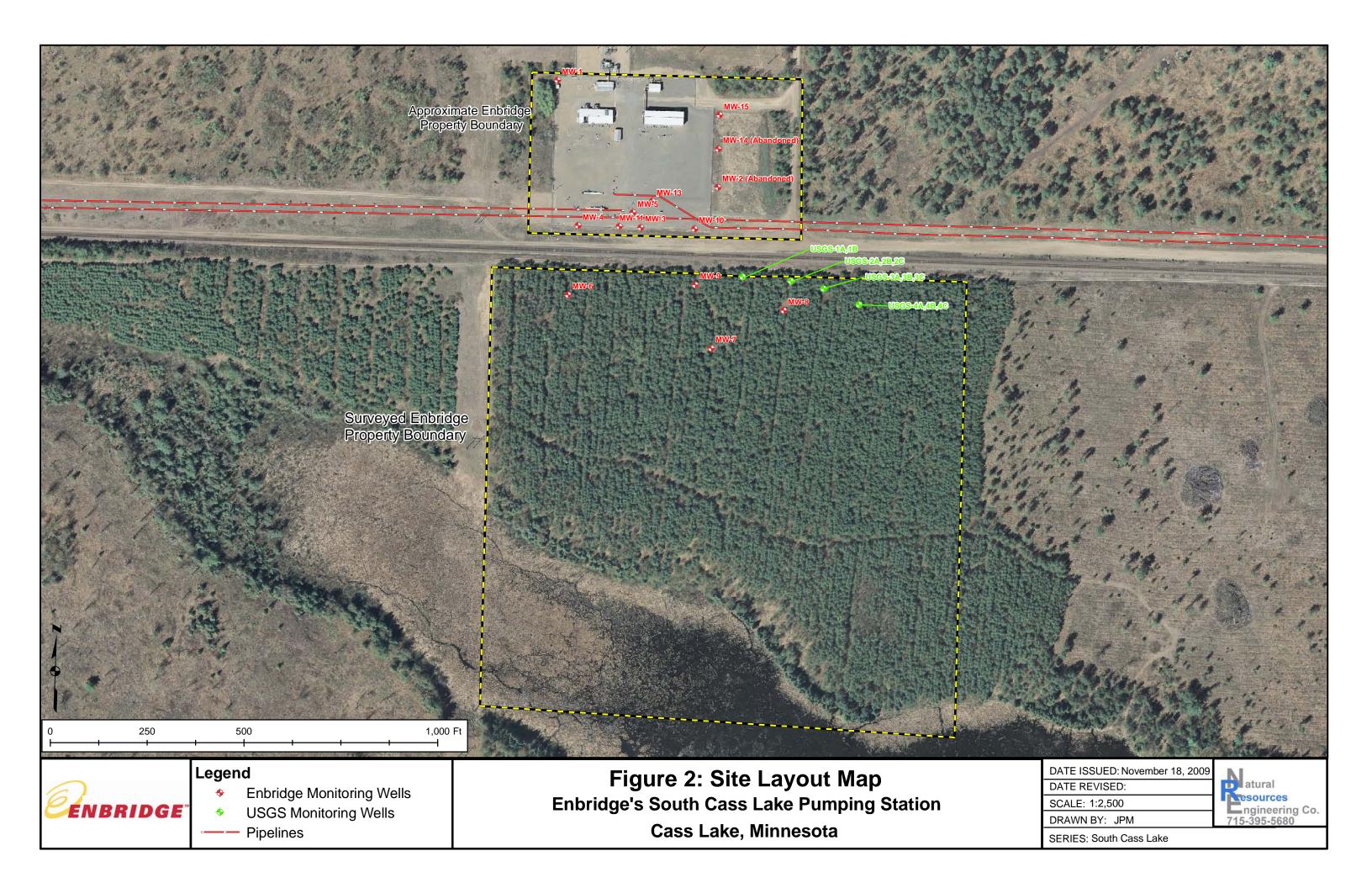
Table 2: Groundwater Sampling Results - BTEX and ERDRO Enbridge Energy, Limited Partnership - South Cass Lake Station

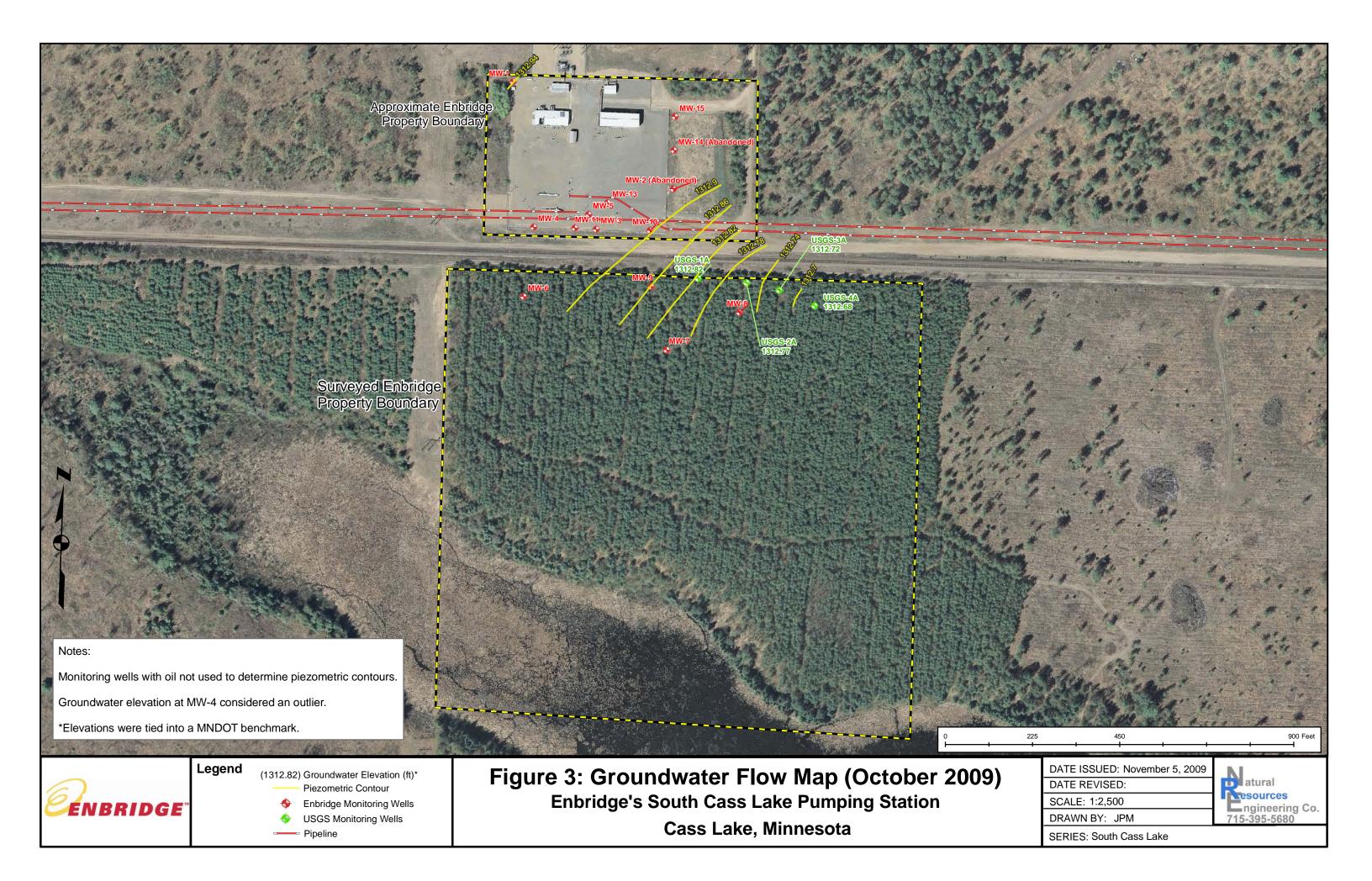
March Risk Limit (upt.) 10	Location	Date	Benzene (ug/l)	Ethylbenzene (ug/l)	Toluene (ug/l)	Xylenes, -m, -p (ug/L)	Xylenes, -o (ug/L)	ERDRO (ug/L)
MW-1	Health Risk Limit (ug/L)		10	700	1,000	10,00	0	
MW-1	MW-1	6/6/2001	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-1	MW-1		< 1.0	< 1.0		< 2.0	< 1.0	< 100
MW-1 8/26/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 100 MW-1 12/30/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 100 MW-1 4/6/2005 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-1 4/6/2005 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-1 4/6/2005 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-1 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 MW-1 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 MW-1 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 MW-1 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 MW-1 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.20 MW-1 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.23 MW-2 17/6/2003 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 17/6/2003 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 17/6/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2006 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 18/26/2006 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 2.0 MW-2 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 2.0 MW-2 6/26/2008 < 0.10 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-2 11/25/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 6/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 6/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 6/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 242 MW-2 6/4/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 11/26/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-4 11/26/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-4 11/26/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 11/26/2009 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-4 11/26/2009 < 0.1 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 MW-4 11/26/2009 < 0.1 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 MW-4 11/26/2009 < 0.1 < 0.0 < 0	MW-1	1/6/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 110
MW-1	MW-1	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-1	MW-1	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-1	MW-1		< 1.0	< 1.0		< 2.0	< 1.0	< 100
MW-1	MW-1			< 1.0		< 2.0	< 1.0	
MW-1								
MW-1				< 0.40	< 0.36			
MW-1 10/26/2009 < 0.23								
MW-2 1/6/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 100 MW-2								
MW-2 5/12/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 100 MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 100 MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 140 MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 140 MW-2 12/30/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-2 4/6/2005 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-2 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 114 MW-2 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 114 MW-2 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 100 MW-2 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 100 MW-4 16/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 159 MW-2 10/26/2009 Well was abandoned due to new construction. MW-4 6/6/2001 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 16/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 16/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 < 100 MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 1.0 < 100 MW-4 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 100 MW-4 11/25/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 100 MW-4 11/25/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 100 MW-6 1/6/2005 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2005 < 0.1 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2005 < 0.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2003 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 120 MW-6 1/6/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 120 MW-6 1/6/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 0.74 < 0.36 < 0.74 MW-7 1/6/2003 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	MW-2	6/6/2001	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-2 12/30/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	MW-2	7/16/2003	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 8/26/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 MW-2	MW-2	1/6/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 12/30/2004 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-2 4/6/2005 < 1.0	MW-2	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 4/6/2005 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-2 6/26/2008 < 0.14	MW-2	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	140
MW-2 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 114 MW-2 61/2008 < 0.23	MW-2	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 242 MW-2 6/4/2009 < 1.0	MW-2	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-2 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 159 MW-2 10/26/2009 Vell was abandoned due to new construction. MW-4 6/6/2001 < 1.0	MW-2	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	114
MW-2 10/26/2009 Well was abandoned due to new construction. MW-4 6/6/2001 < 1.0	MW-2	11/25/2008	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	242
MW-2 10/26/2009 Well was abandoned due to new construction. MW-4 6/6/2001 < 1.0	MW-2	6/4/2009	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	159
MW-4 7/16/2003 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 1/6/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 5/12/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 8/26/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2005 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2005 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 137 MW-5 1/6/2004 6,500 530 < 50 1,800 < 50	MW-2	10/26/2009			abandoned	due to new const	ruction.	
MW-4 1/6/2004 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	MW-4	6/6/2001	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 5/12/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 8/26/2004 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2005 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 137 MW-4 6/4/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-5 1/6/2004 6,500 530 < 50 1,800 < 50 MW-6 7/16/2003 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 <th< td=""><td>MW-4</td><td>7/16/2003</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td>< 2.0</td><td>< 1.0</td><td>< 100</td></th<>	MW-4	7/16/2003	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 8/26/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2005 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 6/26/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 1.0 1.0 < 1.0 < 1.0 < 2.0 < 1.0 1.0 < 1.0 < 1.0 < 0.36 < 23.1 MW-5 1/6/2004 6,500 530 < 50 1,800 < 50 MW-6 7/16/2003 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-6 1/6/2004 < 1.0 < 1.0<	MW-4	1/6/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 12/30/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 4/6/2005 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 137 MW-4 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 22.1 MW-5 1/6/2004 6,500 530 < 50 1,800 < 50 MW-6 7/16/2003 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-6 7/16/2003 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-6 5/12/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 MW-6 8/26/2004	MW-4	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 4/6/2005 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 137 MW-4 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 276 MW-4 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 22.1 MW-5 1/6/2004 < 6,500 < 530 < 50 1,800 < 50 MW-6 7/16/2003 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 1/6/2004 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0	MW-4	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-4 11/25/2008 < 0.23	MW-4	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 276 MW-4 6/4/2009 < 1.0	MW-4	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-4 6/4/2009 < 1.0 < 1.0 < 2.0 < 1.0 137 MW-4 10/26/2009 < 0.23	MW-4	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	< 100
MW-4 10/26/2009 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 23.1 MW-5 1/6/2004 6,500 530 < 50	MW-4	11/25/2008	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	276
MW-5 1/6/2004 6,500 530 <50 1,800 <50 MW-6 7/16/2003 < 1.0	MW-4	6/4/2009	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	137
MW-6 7/16/2003 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 1	MW-4	10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	<23.1
MW-6 1/6/2004 < 1.0	MW-5	1/6/2004	6,500	530	<50	1,800	<50	
MW-6 5/12/2004 < 1.0 < 1.0 < 2.0 < 1.0 < 100 MW-6 8/26/2004 < 1.0	MW-6	7/16/2003	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-6 8/26/2004 < 1.0 < 1.0 < 2.0 < 1.0 130 MW-6 12/30/2004 < 1.0	MW-6	1/6/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-6 8/26/2004 < 1.0 < 1.0 < 2.0 < 1.0 130 MW-6 12/30/2004 < 1.0	MW-6	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-6 4/6/2005 < 1.0	MW-6	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	130
MW-6 4/6/2005 < 1.0	MW-6	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-6 11/25/2008 < 0.23	MW-6	4/6/2005		< 1.0		< 2.0	< 1.0	< 100
MW-6 6/4/2009 < 1.0 < 1.0 < 2.0 < 1.0 209 MW-6 10/26/2009 < 0.23	MW-6	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	188
MW-6 10/26/2009 < 0.23	MW-6	11/25/2008	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	128
MW-7 7/16/2003 < 1.0	MW-6	6/4/2009	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	209
MW-7 1/6/2004 < 1.0	MW-6	10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	<23.1
MW-7 5/12/2004 < 1.0	MW-7	7/16/2003				< 2.0		
MW-7 8/26/2004 < 1.0	MW-7	1/6/2004				< 2.0		
MW-7 12/30/2004 < 1.0	MW-7	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-7 4/6/2005 < 1.0	MW-7	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-7 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 118 MW-7 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-7 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 134	MW-7	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-7 6/26/2008 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36 118 MW-7 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-7 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 134	MW-7	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-7 11/25/2008 < 0.23 < 0.40 < 0.36 < 0.74 < 0.36 < 100 MW-7 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 134								
MW-7 6/4/2009 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 134								

Table 2: Groundwater Sampling Results - BTEX and ERDRO Enbridge Energy, Limited Partnership - South Cass Lake Station

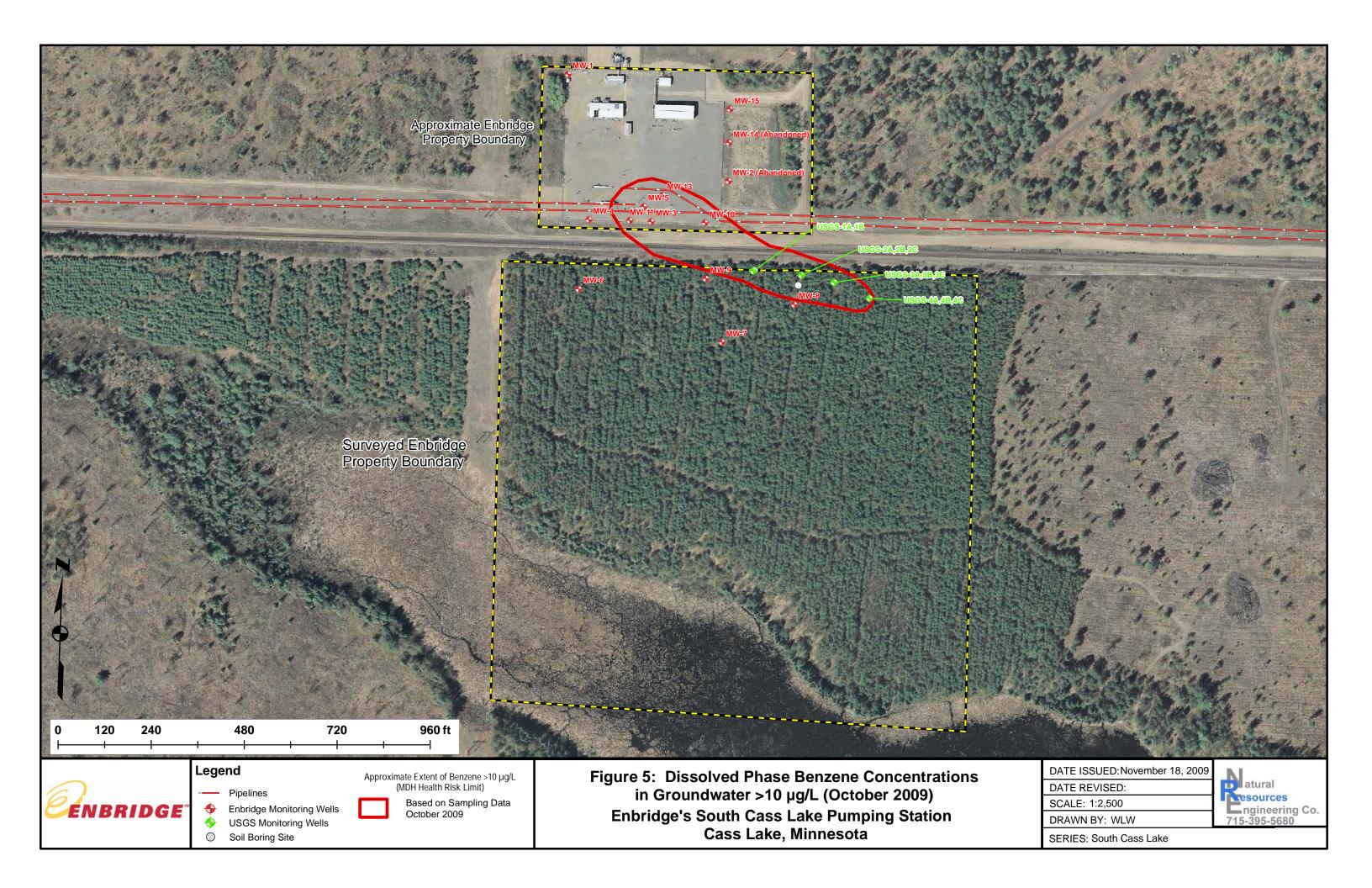
Location	Date	Benzene (ug/l)	Ethylbenzene (ug/l)	Toluene (ug/l)	Xylenes, -m, -p (ug/L)	Xylenes, -o (ug/L)	ERDRO (ug/L)
Health Risk Limit (ug/L)		10	700	1,000	10,00	0	
MW-8	7/16/2003	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-8	1/6/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-8	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	150
MW-8	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-8	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-8	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-8	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	149
MW-8	11/25/2008	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	< 100
MW-8	6/4/2009	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	143
MW-8	10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	<23.1
MW-9	7/16/2003	0.51	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-9	1/6/2004	<1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-9	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
MW-9	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	210
MW-9	12/30/2004	7.5	3.7	< 1.0	< 2.0	< 1.0	260
MW-9	4/6/2005	18	< 1.0	< 1.0	< 2.0	< 1.0	230
MW-9	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	101
MW-9	11/25/2008	25.7	2.6	< 0.36	< 0.74	< 0.36	364
MW-9	6/4/2009	132	< 1.0	< 1.0	< 2.0	< 1.0	1,860
MW-9	10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	831
MW-10	1/5/2004	1,100	110	<5.0	520	<5.0	30,000
MW-10	5/12/2004	2,100	210	< 10	350	< 10	6,500
MW-10	8/26/2004	2,600	240	< 25	180	< 25	7,800
MW-10	12/30/2004	1,400	160	< 10	61	< 10	6,500
MW-10	4/6/2005	1,100	220	< 10	62	< 10	6,500
MW-10	6/26/2008	1,830	44.2	< 3.6	< 7.4	< 3.6	9,000
MW-10	11/25/2008	595	18.1	< 0.71	3.3	< 0.72	65,900
MW-10	6/4/2009	305	15	<1.0	3.4	<1.0	50,800
MW-10	10/26/2009	159	5.6	< 0.36	3	< 0.36	22,400
USGS 1A	10/26/2009	776	142	< 1.8	< 3.7	< 1.8	4,930
USGS 2A	10/26/2009	705	< 2.0	< 1.8	< 3.7	< 1.8	5,520
USGS 3A	10/26/2009	147	0.74	< 0.36	1.5	< 0.36	4,060
USGS 4A	10/26/2009	13.8	< 0.40	< 0.36	< 0.74	< 0.36	1,670
Field Blank	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
Field Blank	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 100
Field Blank	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	< 100
Field Blank	11/25/2008	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	< 100
Field Blank	6/4/2009	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	106
Field Blank	10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	NA
Trip Blank	7/16/2003	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
Trip Blank	1/6/2004				he sampling event		
Trip Blank	5/12/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
Trip Blank	8/26/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
Trip Blank	12/30/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
Trip Blank	4/6/2005	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
Trip Blank	6/26/2008	< 0.14	< 0.40	< 0.36	< 0.74	< 0.36	
Trip Blank Trip Blank	11/25/2008	< 0.23 < 1.0	< 0.40 < 1.0	< 0.36 < 1.0	< 0.74 < 2.0	< 0.36 < 1.0	
Trip Blank	6/4/2009 10/26/2009	< 0.23	< 0.40	< 0.36	< 0.74	< 0.36	

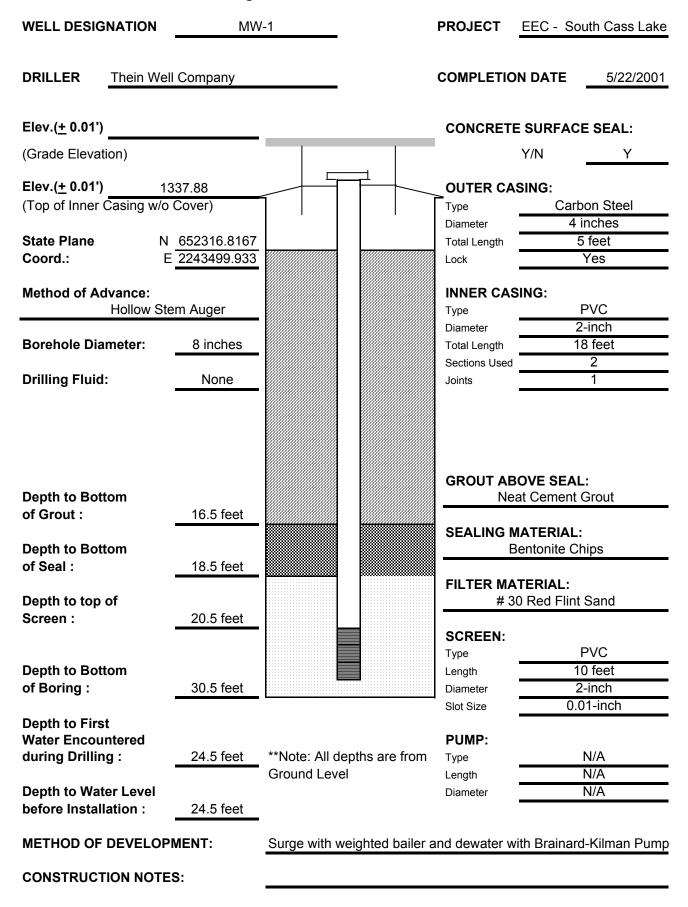

Table 3: Groundwater Sampling Results: Natural Attenuation Parameters Enbridge Energy, Limited Partnership - South Cass Lake Station

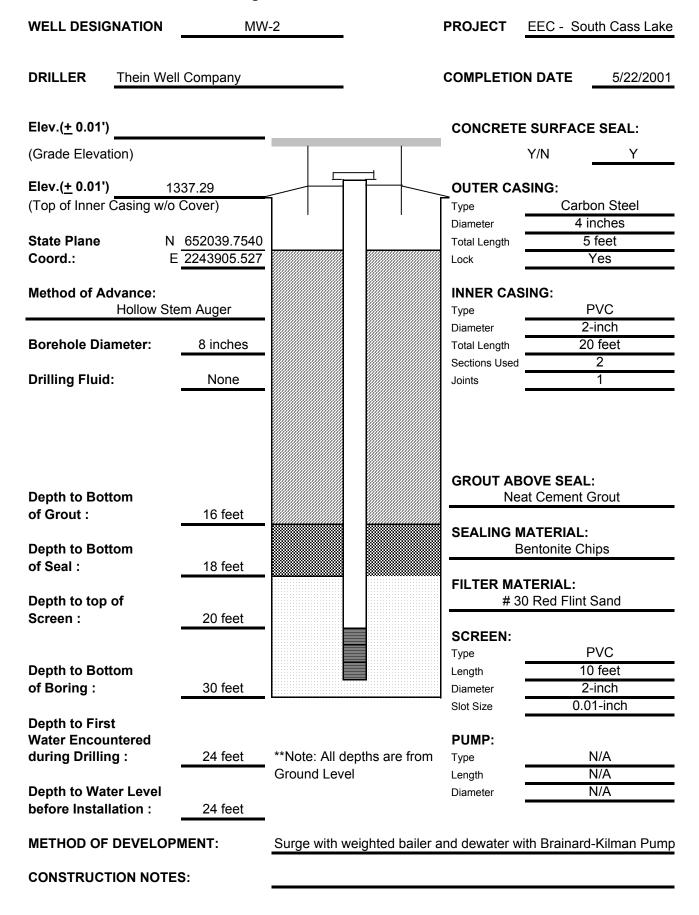

Location	Collection Date	Nitrate (mg/L)	Sulfate (mg/L)	Methane (ug/L)	Disolved Oxygen (mg/L)	Fe ⁺² (mg/L)
MW-1	7/16/2003				5.4	<0.1
10100	1/6/2004	2.1	6.3		5.2	<0.1
	5/12/2004	2.1	0.0		5.0	<0.1
	8/26/2004	0.69	< 4.0	< 10	7.0	<0.1
	12/30/2004	0.81	< 4.0	< 10	6.5	<0.1
	4/6/2005	0.58	< 4.0	< 10	6.0	<0.1
	11/25/2008	0.62	3.6	4.9	11.4	516
	10/26/2009	0.2	3.3	< 0.93	11.8	0.024
MW-2	7/16/2003				4.1	<0.1
	1/6/2004	4.1	< 4.0		4.5	<0.1
	5/12/2004				4.3	<0.1
	11/25/2008	9.7	9.8	< 2.0	7.0	1.52
	10/26/2009	Well was re	emoved due	e to new con	struction	
MW-4	7/16/2003				3.8	<0.1
	1/6/2004	1.0	< 4.0		5.5	<0.1
	5/12/2004				5.7	<0.1
	11/25/2008	5.8	6.3	< 2.0	7.7	2.12
	10/26/2009	6.2	6.6	< 0.93	10.6	< 0.018
MW-6	7/16/2003				2.0	<0.1
	1/6/2004	1.9	5.4		2.6	<0.1
	5/12/2004				2.2	<0.1
	11/25/2008	2.8	7.0	4.2	9.3	22.9
	10/26/2009	2	5.9	< 0.93	11.4	< 0.018
MW-7	7/16/2003				3.4	<0.1
	1/6/2004	< 0.25	5.7		4.3	<0.1
	5/12/2004				5.5	<0.1
	11/25/2008	0.46	8.3	< 2.0	8.7	9.2
	10/26/2009	0.61	7.8	< 0.93	11.5	< 0.018
MW-8	7/16/2003				2.5	<0.1
	1/6/2004	0.34	5.5		2.8	<0.1
	5/12/2004				2.0	<0.1
	8/26/2004	0.31	5.2	< 10	6.0	<0.1
	12/30/2004	< 0.25	7.5	< 10	5.0	<0.1
	4/6/2005	< 0.25	11	< 10	5.0	<0.1
	11/25/2008	0.26	9.5	< 2.0	8.3	22.2
	10/26/2009	0.33	10	< 0.93	12.8	< 0.018
MW-9	7/16/2003				2.8	<0.1
	1/6/2004	< 0.25	6.3		2.0	<0.1
	5/12/2004				1.5	<0.1
	8/26/2004	< 0.25	7.2	< 10	1.5	<0.1
	12/30/2004	< 0.25	< 4.0	1,800	2.0	<0.1
	4/6/2005	< 0.25	4.7	280	2.0	<0.1
	11/25/2008	0.2	4.0	968	2.5	39.8
	10/26/2009	< 0.20	4.6	543	5.7	0.021

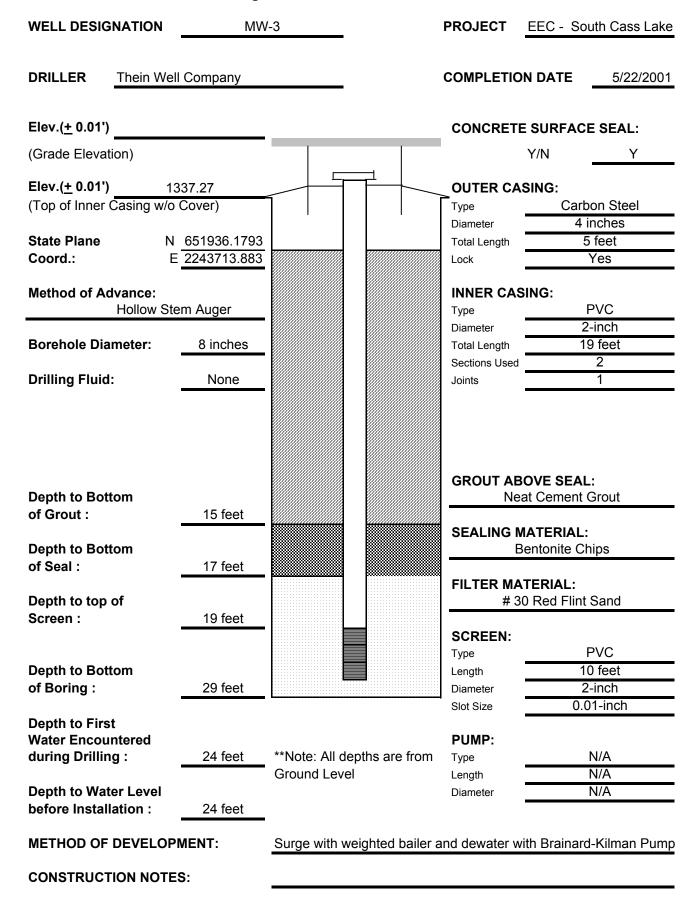

Table 3: Groundwater Sampling Results: Natural Attenuation Parameters Enbridge Energy, Limited Partnership - South Cass Lake Station

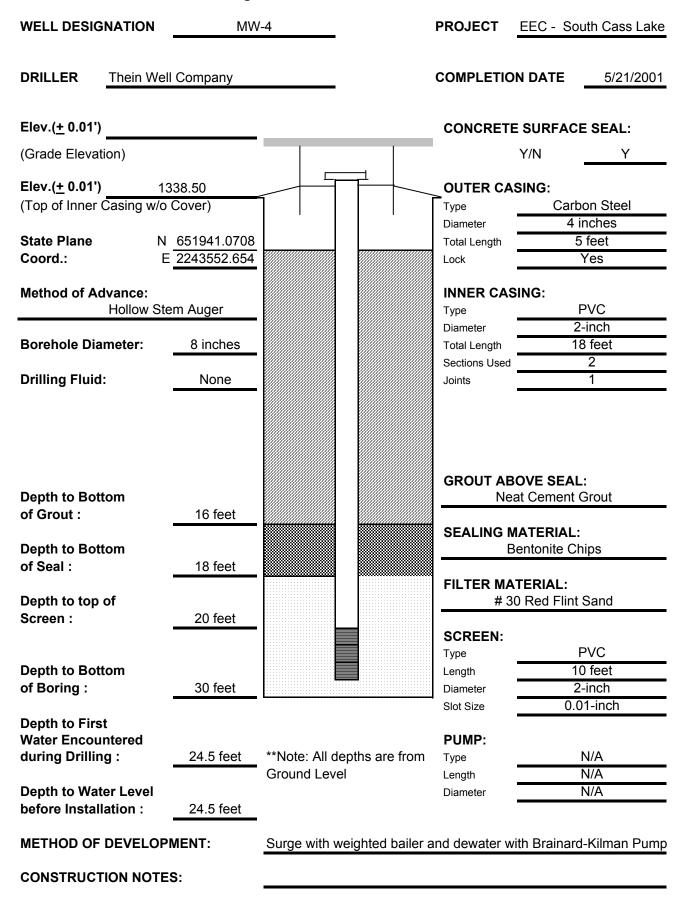

Location	Collection Date	Nitrate (mg/L)	Sulfate (mg/L)	Methane (ug/L)	Disolved Oxygen (mg/L)	Fe ⁺² (mg/L)
MW-10	1/5/2004	< 0.25	< 4.0		1.5	<0.1
	5/12/2004				1.0	<0.1
	8/26/2004	< 0.25	< 4.0	4,900	0.8	<0.1
	12/30/2004	2.9	4.2	6,100	1.0	<0.1
	4/6/2005	0.51	< 4.0	2,600	1.5	<0.1
	11/25/2008	1.10	3.3	2,290	2.7	54.8
	10/26/2009	0.30	2.9	5,100	2.5	1.3
USGS-1A	10/26/2009	< 0.20	2.1	11,700	1.5	< 0.018
USGS-2A	10/26/2009	< 0.20	2.5	5,480	1.7	< 0.018
USGS-3A	10/26/2009	< 0.20	2.3	3,240	3.7	< 0.018
USGS-4A	10/26/2009	< 0.20	4.2	665	13.5	< 0.018
Field Blank	12/30/2004	< 0.25	< 4.0	< 10		
	4/6/2005	< 0.25	< 4.0	< 10		
	11/25/2008	< 0.085	< 0.51	< 2.0		0.0115


FIGURES

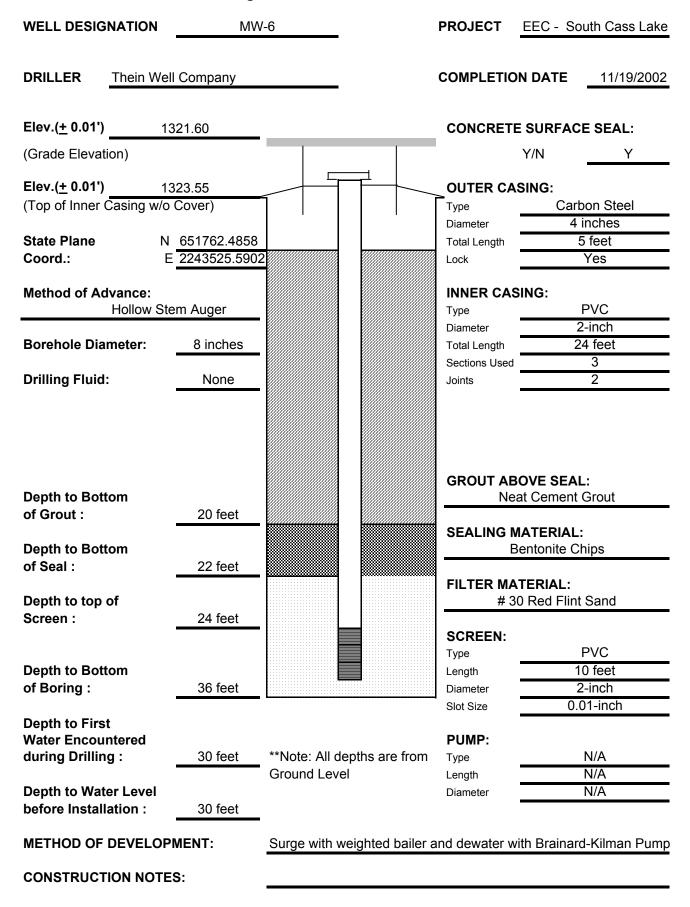


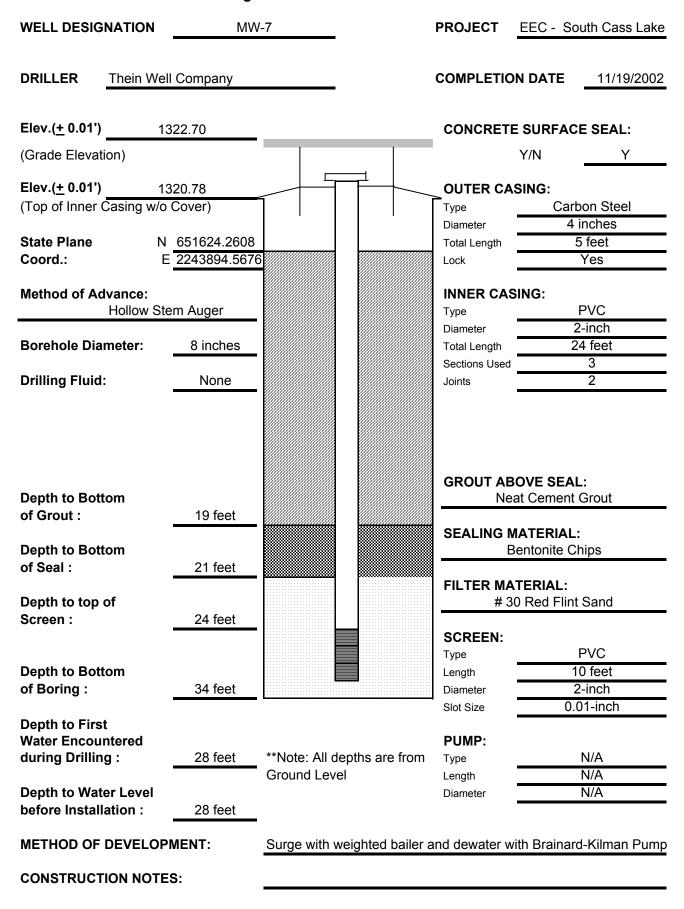


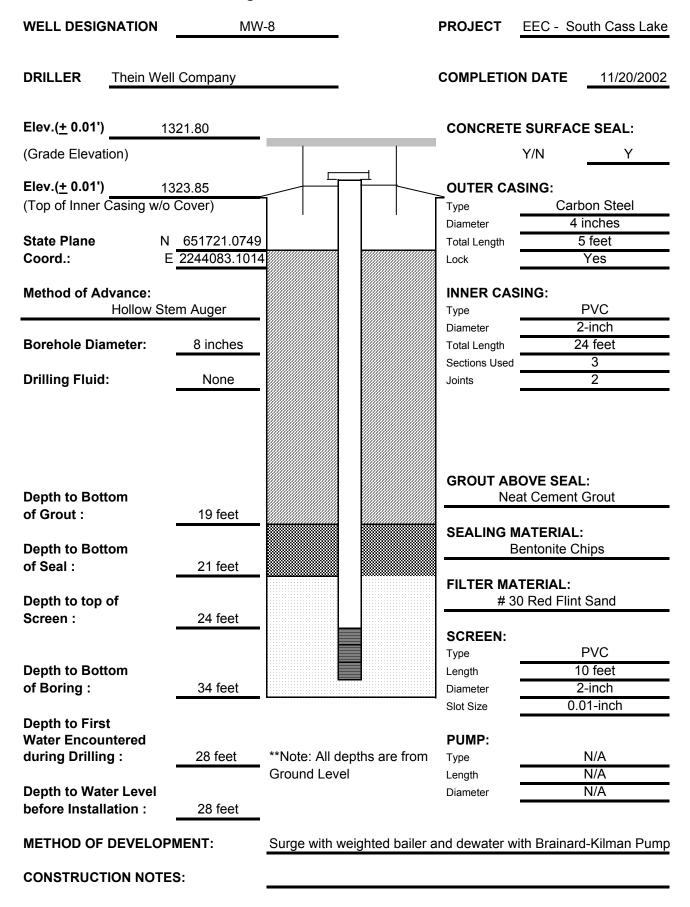


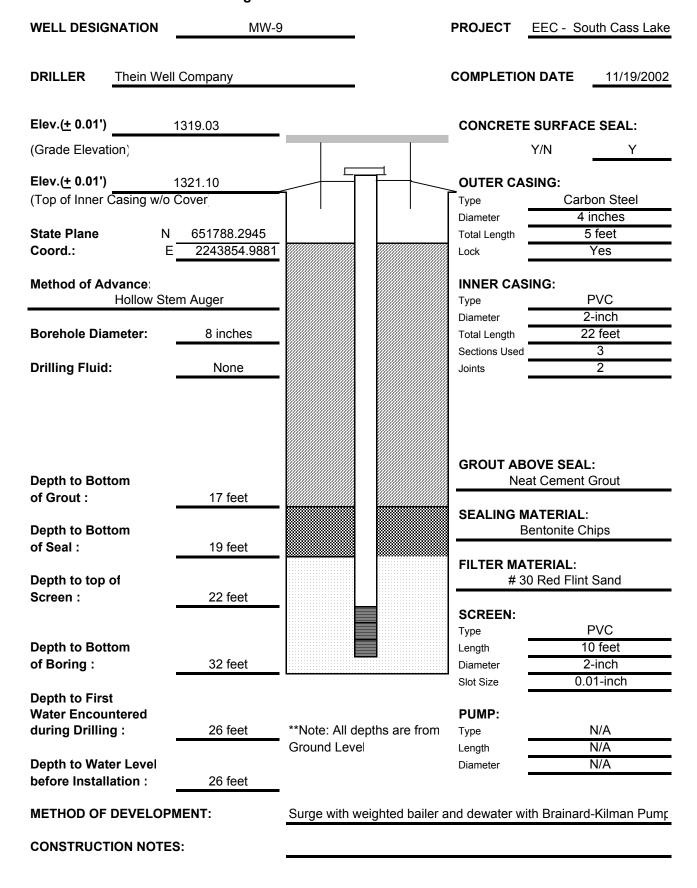


APPENDIX A – WELL CONSTRUCTION LOGS

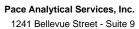








WELL DESIGNATION	MW-5		PROJECT	EEC - So	uth Cass Lake
DRILLER Thein W	ell Company		COMPLETIC	ON DATE	12/17/2003
Elev.(<u>+</u> 0.01')			CONCRET	E SURFACI	E SEAL:
(Grade Elevation)				Y/N	Υ
Elev.(<u>+</u> 0.01')			OUTER CA	ZSING:	
(Top of Inner Casing w/	o Cover)	$f \mid \cdot \mid \cdot \mid \cdot \mid$	Type		on Steel
	·		Diameter	4	inches
	N 651974.3570		Total Length		feet
Coord.:	E 2243693.9200		Lock		Yes
Method of Advance:			INNER CA	SING:	
	Stem Auger		Туре		PVC
			Diameter		?-inch
Borehole Diameter:	8 inches		Total Length		1 feet
Drilling Fluid:	None		Sections Used Joints		2
Drilling Fluid.	None		Joints		
Depth to Bottom of Grout :	17 feet		SEALING	BOVE SEAL eat Cement	Grout
Depth to Bottom of Seal :	19 feet			Bentonite Ch	nips
Depth to top of Screen :	21 feet		FILTER M/	ATERIAL: 30 Red Flint	Sand
ocieen.	211661		SCREEN:		
			Туре		PVC
Depth to Bottom			Length		0 feet
of Boring :	31 feet		Diameter		?-inch
Depth to First Water Encountered	05 ()	**Notes All doubles are forces	Slot Size PUMP:		01-inch
during Drilling :	25 feet	**Note: All depths are from Ground Level	Type		N/A N/A
Depth to Water Level before Installation :	25 feet	Glouilu Level	Length Diameter		N/A N/A
METHOD OF DEVELO	PMENT:	Surge with weighted bailer a	and bailed.		
CONSTRUCTION NOT	ES:				



WELL DESIGNATION	MW-1	0	PROJECT	EEC - So	uth Cass Lake
DRILLER Thein We	II Company		COMPLETIC	ON DATE	12/16/2003
Elev.(<u>+</u> 0.01')			CONCRET	E SURFACE	E SEAL:
(Grade Elevation)				Y/N	Y
Elev.(± 0.01') (Top of Inner Casing w/o	Cover)		OUTER CA		oon Steel
State Plane N	651932.6480 E 2243852.6260		Diameter Total Length Lock	5	inches feet Yes
Method of Advance: Hollow St	em Auger		INNER CA		PVC
Borehole Diameter:	8 inches		Diameter Total Length Sections Used	2	e-inch 0 feet 3
Drilling Fluid:	None		Joints		2
Depth to Bottom of Grout :	16 feet		SEALING I	BOVE SEAL eat Cement of MATERIAL: Bentonite Cr	Grout
of Seal : Depth to top of Screen :	18 feet 20 feet		FILTER MA	ATERIAL: 30 Red Flint	Sand
Depth to Bottom	20 leet		SCREEN: Type		PVC 0 feet
of Boring :	30 feet		Length Diameter	2	!-inch
Depth to First Water Encountered during Drilling:	24 feet	**Note: All depths are from	Slot Size PUMP: Type		01-inch N/A
Depth to Water Level before Installation :	24 feet	Ground Level	Length Diameter		N/A N/A
METHOD OF DEVELOP	PMENT:	Surge with weighted bailer a	and bailed.		
CONSTRUCTION NOTE	:S:				

WELL DESIGNATION	MW-1	1	PROJECT	EEC - So	uth Cass Lake
DRILLER Thein Wel	ll Company		COMPLETIC	ON DATE	12/16/2003
Elev.(<u>+</u> 0.01')			CONCRET	E SURFACE	E SEAL:
(Grade Elevation)				Y/N	Y
Elev.(± 0.01') (Top of Inner Casing w/o	Cover)		OUTER CA	Carb	on Steel
State Plane N Coord.:			Diameter Total Length Lock	5	nches feet Yes
Method of Advance: Hollow Ste	em Auger		INNER CA		PVC
Borehole Diameter:	8 inches		Diameter Total Length Sections Used	2	-inch 1 feet 3
Drilling Fluid:	None		Joints		2
Depth to Bottom of Grout :	17 feet		Ø1	BOVE SEAL eat Cement	
Depth to Bottom of Seal :	19 feet			MATERIAL: Bentonite Ch	nips
Depth to top of Screen :	21 feet			ATERIAL: 30 Red Flint	Sand
Depth to Bottom of Boring :	31 feet		SCREEN: Type Length Diameter Slot Size	2	PVC 0 feet -inch 01-inch
Depth to First Water Encountered during Drilling :	25 feet	**Note: All depths are from	PUMP: Type		N/A
Depth to Water Level before Installation :	25 feet	Ground Level	Length Diameter		N/A N/A
METHOD OF DEVELOP	MENT:	Surge with weighted bailer a	and bailed.		
CONSTRUCTION NOTE	S:				

WELL DESIGNATION	MW-1:	3	PROJECT	EEC - So	uth Cass Lake
DRILLER Thein Wel	l Company		COMPLETIC	N DATE	12/18/2003
Elev.(<u>+</u> 0.01')			CONCRET	E SURFACE	E SEAL:
(Grade Elevation)				Y/N	Y
Elov (+ 0.04")			OUTED CA	OINO.	
Elev.(± 0.01') (Top of Inner Casing w/o	Cover)		OUTER CA		on Steel
(Top of filler Guerrig W/o	00101)		Diameter		inches
State Plane N	652003.9910		Total Length	į	5 feet
Coord.:	2243743.3980		Lock		Yes
Method of Advance:			INNER CAS	SING:	
Hollow Ste	em Auger		Туре		PVC
			Diameter		?-inch
Borehole Diameter:	8 inches		Total Length		4 feet
Deilling Fluid	None		Sections Used		2
Drilling Fluid:	none		Joints		
			CROUT AS	BOVE SEAL	
Depth to Bottom			21	eat Cement	
of Grout :	20 feet			out ournaint	Ciout
			SEALING I	MATERIAL:	
Depth to Bottom				Bentonite Cl	nips
of Seal :	22 feet		EU TED MA	TEDIAL -	
Depth to top of			FILTER MA	NERIAL: 30 Red Flint	Sand
Screen :	24 feet		II	30 1 to a 1 mile	Caria
			SCREEN:		
			Туре		PVC
Depth to Bottom	24 foot		Length		0 feet
of Boring :	34 feet		Diameter Slot Size		?-inch 01-inch
Depth to First			Siot Size	0.0	71-IIICH
Water Encountered			PUMP:		
during Drilling :	28 feet	**Note: All depths are from	Туре		N/A
B 41 () 14 () .		Ground Level	Length		N/A
Depth to Water Level before Installation :	28 feet		Diameter		N/A
perore installation :	Zo leet				
METHOD OF DEVELOP	MENT:	Surge with weighted bailer	and bailed.		
CONSTRUCTION NOTE	S:				
	. .	j			

APPENDIX B – ANALYTICAL LABORATORY REPORTS

Green Bay, WI 54302 (920)469-2436

June 18, 2009

Barry Power Natural Resources Engineering Co. 1409 Hammond Avenue Suite 110 Superior, WI 54880

RE: Project: SOUTH CASS LAKE Pace Project No.: 4018193

Dear Barry Power:

Enclosed are the analytical results for sample(s) received by the laboratory on June 05, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

AVM-

Steven Mleczko for Brian Basten brian.basten@pacelabs.com Project Manager

Enclosures

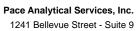
1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Green Bay Certification IDs

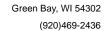

Wisconsin DATCP Certification #: 105-444
Wisconsin DATCP Certification #: 105-444
Wisconsin Certification #: 405132750
Wisconsin Certification #: 405132750
South Carolina Certification #: 83006001
South Carolina Certification #: 83006001
North Dakota Certification #: R-200
North Dakota Certification #: R-150
North Carolina Certification #: 503
North Carolina Certification #: 503

New York Certification #: 11887

New York Certification #: 11888
Minnesota Certification #: 055-999-334
Minnesota Certification #: 055-999-334
Louisiana Certification #: 04169
Louisiana Certification #: 04168
Kentucky Certification #: 83
Kentucky Certification #: 82
Illinois Certification #: 200051
Illinois Certification #: 200050
Florida/NELAP Certification #: E87951
Florida/NELAP Certification #: E87948

REPORT OF LABORATORY ANALYSIS

Green Bay, WI 54302 (920)469-2436


SAMPLE SUMMARY

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Lab ID	Sample ID	Matrix	Date Collected	Date Received
4018193001	MW-1	Water	06/04/09 00:00	06/05/09 08:50
4018193002	MW-2	Water	06/04/09 00:00	06/05/09 08:50
4018193003	MW-4	Water	06/04/09 00:00	06/05/09 08:50
4018193004	MW-6	Water	06/04/09 00:00	06/05/09 08:50
4018193005	MW-7	Water	06/04/09 00:00	06/05/09 08:50
4018193006	MW-8	Water	06/04/09 00:00	06/05/09 08:50
4018193007	MW-9	Water	06/04/09 00:00	06/05/09 08:50
4018193008	MW-10	Water	06/04/09 00:00	06/05/09 08:50
4018193009	FIELD BLANK	Water	06/04/09 00:00	06/05/09 08:50
4018193010	TRIP BLANK	Water	06/04/09 00:00	06/05/09 08:50

SAMPLE ANALYTE COUNT

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Lab ID	Sample ID	Method	Analysts	1 6 1 6 1 6 1 6 1 6 1 6 1 6	Analytes Reported	
4018193001	MW-1	Extended Range DRO	DAL			
		WI MOD GRO	SES	6		
4018193002	MW-2	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193003	MW-4	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	Reported 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		
4018193004	MW-6	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193005	MW-7	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193006	MW-8	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193007	MW-9	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		
4018193008	MW-10	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193009	FIELD BLANK	Extended Range DRO	DAL	1		
		WI MOD GRO	SES	6		
4018193010	TRIP BLANK	WI MOD GRO	SES	6		

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Sample: MW-1	Lab ID: 4018	3193001	Collected: 06/04	09 00:00	Received: 06	6/05/09 08:50	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
Extended Range DRO GCS	Analytical Meth	od: Extend	ed Range DRO Pro	eparation	Method: Extend	ed Range DRO			
Extended Range DRO (C10-C40)	91.6 ug/	L	75.5	1	06/11/09 15:06	06/17/09 12:3	30		
WIGRO GCV	Analytical Method: WI MOD GRO								
Benzene	<1.0 ug/	L	1.0	1		06/09/09 19:2	8 71-43-2		
Ethylbenzene	<1.0 ug/	′L	1.0	1		06/09/09 19:2	8 100-41-4		
Toluene	<1.0 ug/	L.	1.0	1		06/09/09 19:2	8 108-88-3		
m&p-Xylene	<2.0 ug/	L'L	2.0	1		06/09/09 19:2	8 1330-20-7		
o-Xylene	<1.0 ug/	L	1.0	1		06/09/09 19:2	8 95-47-6		
a,a,a-Trifluorotoluene (S)	99 %		80-120	1		06/09/09 19:2	8 98-08-8		
Sample: MW-2	Lab ID: 4018	3193002	Collected: 06/04	09 00:00	Received: 06	6/05/09 08:50	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
Extended Range DRO GCS	Analytical Meth	od: Extend	ed Range DRO Pr	eparation	Method: Extend	ed Range DRO	I		
Extended Range DRO (C10-C40)	159 ug/		75.5	1	06/11/09 15:14	_			
WIGRO GCV	Analytical Method: WI MOD GRO								
Benzene	<1.0 ug/	′L	1.0	1		06/09/09 19:5	64 71-43-2		
Ethylbenzene	<1.0 ug/		1.0			06/09/09 19:5			
Toluene	<1.0 ug/		1.0			06/09/09 19:5			
m&p-Xylene	<2.0 ug/		2.0	1			4 1330-20-7		
o-Xylene	<1.0 ug/		1.0	1		06/09/09 19:5			
a,a,a-Trifluorotoluene (S)	98 %	_	80-120	1		06/09/09 19:5			
Sample: MW-4	Lab ID: 4018	2102002	Collected: 06/04	/nn nn·nn	Pagaiyad: 0	6/05/09 08:50	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
					· ·				
Extended Range DRO GCS	•		ed Range DRO Pro			_			
Extended Range DRO (C10-C40)	137 ug/		76.2	1	06/11/09 15:14	06/17/09 13:1	9		
WIGRO GCV	Analytical Method: WI MOD GRO								
Benzene	<1.0 ug/		1.0	1		06/09/09 20:1	9 71-43-2		
Ethylbenzene	<1.0 ug/	L L	1.0	1		06/09/09 20:1	9 100-41-4		
Toluene	<1.0 ug/	′L	1.0	1		06/09/09 20:1	9 108-88-3		
m&p-Xylene	<2.0 ug/	′L	2.0	1		06/09/09 20:1	9 1330-20-7		
o-Xylene	<1.0 ug/		1.0	1		06/09/09 20:1	9 95-47-6		

Date: 06/18/2009 01:59 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 5 of 11

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Sample: MW-6	Lab ID: 4018	3193004	Collected: 06/04/0	09 00:00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Meth	od: Extend	ed Range DRO Pre	paration	Method: Extend	led Range DRO		
Extended Range DRO (C10-C40)	209 ug/	L	76.9	1	06/11/09 15:15	06/17/09 13:3	1	
WIGRO GCV	Analytical Meth	od: WI MO	D GRO					
Benzene	<1.0 ug/	L	1.0	1		06/09/09 20:4	5 71-43-2	
Ethylbenzene	<1.0 ug/	L	1.0	1		06/09/09 20:4	5 100-41-4	
Toluene	<1.0 ug/	L	1.0	1		06/09/09 20:4	5 108-88-3	
m&p-Xylene	<2.0 ug/	L	2.0	1		06/09/09 20:4	5 1330-20-7	
o-Xylene	<1.0 ug/	L	1.0	1		06/09/09 20:4	5 95-47-6	
a,a,a-Trifluorotoluene (S)	99 %		80-120	1		06/09/09 20:4	5 98-08-8	
Sample: MW-7	Lab ID: 4018	3193005	Collected: 06/04/0	09 00:00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	- Analytical Meth	od: Extend	ed Range DRO Pre	paration	Method: Extend	ed Range DRO		
Extended Range DRO (C10-C40)	134 ug/		75.5	1		06/17/09 13:4		
WIGRO GCV	Analytical Meth	od: WI MO	D GRO					
Benzene	<1.0 ug/	L	1.0	1		06/09/09 21:1	0 71-43-2	
Ethylbenzene	<1.0 ug/		1.0	1		06/09/09 21:1	0 100-41-4	
Toluene	<1.0 ug/		1.0	1		06/09/09 21:1	0 108-88-3	
m&p-Xylene	<2.0 ug/		2.0	1		06/09/09 21:1		
o-Xylene	<1.0 ug/		1.0	1		06/09/09 21:1		
a,a,a-Trifluorotoluene (S)	100 %	_	80-120	1		06/09/09 21:1		
Sample: MW-8	Lab ID: 4018	193006	Collected: 06/04/0	00·00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	- Analytical Meth	od: Extend	ed Range DRO Pre	paration	Method: Extend	led Range DRO		
Extended Range DRO (C10-C40)	143 ug/		76.9	1		6 06/17/09 13:5		
WIGRO GCV	Analytical Meth							
Benzene	<1.0 ug/	1	1.0	1		06/09/09 21:3	6 71-43-2	
Ethylbenzene	<1.0 ug/		1.0	1		06/09/09 21:3		
Toluene	<1.0 ug/		1.0	1		06/09/09 21:3		
	_							
m&p-Xylene	< 2.0 ug/		2.0	1		06/09/09 21:3		
o-Xylene	<1.0 ug/	L	1.0	1		06/09/09 21:3		
a,a,a-Trifluorotoluene (S)	100 %		80-120	1		06/09/09 21:3	h 98-08-8	

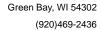
Date: 06/18/2009 01:59 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 11

Project: SOUTH CASS LAKE

Pace Project No.: 4018193


Sample: MW-9	Lab ID: 4018	193007	Collected: 06/0	4/09 00:00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Methor	od: Extend	ed Range DRO P	reparation	Method: Extend	led Range DRO		
Extended Range DRO (C10-C40)	1860 ug/	L	75.	5 1	06/11/09 15:15	06/17/09 14:0	7	
WIGRO GCV	Analytical Methor	od: WI MO	D GRO					
Benzene	132 ug/	L	1.	0 1		06/09/09 22:0	1 71-43-2	
Ethylbenzene	<1.0 ug/	L	1.	0 1		06/09/09 22:0	1 100-41-4	
Toluene	<1.0 ug/	L	1.	0 1		06/09/09 22:0	1 108-88-3	
m&p-Xylene	<2.0 ug/	L	2.	0 1		06/09/09 22:0	1 1330-20-7	
o-Xylene	<1.0 ug/	L	1.	0 1		06/09/09 22:0	1 95-47-6	
a,a,a-Trifluorotoluene (S)	96 %		80-12	0 1		06/09/09 22:0	1 98-08-8	
Sample: MW-10	Lab ID: 4018	193008	Collected: 06/0	1/09 00:00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Meth	od: Extend	ed Range DRO P	reparation	Method: Extend	ed Range DRO		
Extended Range DRO (C10-C40)	50800 ug/		226			06/17/09 14:2		
WIGRO GCV	Analytical Meth	od: WI MO	D GRO					
Benzene	305 ug/	L	1.	0 1		06/09/09 22:2	7 71-43-2	
Ethylbenzene	15.0 ug/		1.			06/09/09 22:2		
Toluene	<1.0 ug/		1.			06/09/09 22:2		
m&p-Xylene	3.4 ug/		2.			06/09/09 22:2		
o-Xylene	<1.0 ug/		1.			06/09/09 22:2		
a,a,a-Trifluorotoluene (S)	112 %	_	80-12			06/09/09 22:2		
				.,				
Sample: FIELD BLANK	Lab ID: 4018	193009	Collected: 06/0	1/09 00:00	Received: 0	6/05/09 08:50	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Methor	od: Extend	ed Range DRO P	reparation	Method: Extend	led Range DRO		
Extended Range DRO (C10-C40)	106 ug/	L	75.	5 1	06/11/09 15:16	06/17/09 14:3	2	
WIGRO GCV	Analytical Methor	od: WI MO	D GRO					
Benzene	<1.0 ug/		1.	0 1		06/09/09 22:5	2 71-43-2	
Ethylbenzene	<1.0 ug/	L	1.	0 1		06/09/09 22:5	2 100-41-4	
	<1.0 ug/		1.	0 1		06/09/09 22:5	2 108-88-3	
Toluene								
Toluene m&p-Xylene	_	L	2.	0 1		06/09/09 22:5	2 1330-20-7	
	<2.0 ug/l <1.0 ug/l		2. 1.			06/09/09 22:5 06/09/09 22:5		

Date: 06/18/2009 01:59 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 11

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

Sample: TRIP BLANK	Lab ID: 401	8193010	Collected: 06/04/0	9 00:00	Received: 06	5/05/09 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIGRO GCV	Analytical Met	hod: WI MO	D GRO					
Benzene	<1.0 ug	g/L	1.0	1		06/09/09 23:18	71-43-2	
Ethylbenzene	<1.0 uç	g/L	1.0	1		06/09/09 23:18	100-41-4	
Toluene	<1.0 uç	g/L	1.0	1		06/09/09 23:18	108-88-3	
m&p-Xylene	<2.0 ug	g/L	2.0	1		06/09/09 23:18	1330-20-7	
o-Xylene	<1.0 ug	g/L	1.0	1		06/09/09 23:18	95-47-6	
a,a,a-Trifluorotoluene (S)	99 %	-	80-120	1		06/09/09 23:18	98-08-8	

Date: 06/18/2009 01:59 PM

REPORT OF LABORATORY ANALYSIS

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

QC Batch: GCV/3507 Analysis Method: WI MOD GRO
QC Batch Method: WI MOD GRO Analysis Description: WIGRO GCV Water

Associated Lab Samples: 4018193001, 4018193002, 4018193003, 4018193004, 4018193005, 4018193006, 4018193007, 4018193008,

4018193009, 4018193010

METHOD BLANK: 167437 Matrix: Water

Associated Lab Samples: 4018193001, 4018193002, 4018193003, 4018193004, 4018193005, 4018193006, 4018193007, 4018193008,

4018193009, 4018193010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	<1.0	1.0	06/09/09 13:56	
Ethylbenzene	ug/L	<1.0	1.0	06/09/09 13:56	
m&p-Xylene	ug/L	<2.0	2.0	06/09/09 13:56	
o-Xylene	ug/L	<1.0	1.0	06/09/09 13:56	
Toluene	ug/L	<1.0	1.0	06/09/09 13:56	
a,a,a-Trifluorotoluene (S)	%	101	80-120	06/09/09 13:56	

LABORATORY CONTROL SAM	PLE & LCSD: 167438		16	67439						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	19.4	19.3	97	96	80-120	.6	20	
Ethylbenzene	ug/L	20	18.6	18.6	93	93	80-120	.03	20	
m&p-Xylene	ug/L	40	37.3	37.4	93	93	80-120	.3	20	
o-Xylene	ug/L	20	18.8	18.8	94	94	80-120	.1	20	
Toluene	ug/L	20	18.9	18.9	95	94	80-120	.4	20	
a,a,a-Trifluorotoluene (S)	%				99	99	80-120			

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 16791	0		167911							
	4	018210004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	1130	400	400	1450	1490	80	91	28-167	3	20	
Ethylbenzene	ug/L	113	400	400	497	501	96	97	51-151	.9	20	
m&p-Xylene	ug/L	1100	800	800	1820	1860	91	96	23-175	2	20	
o-Xylene	ug/L	675	400	400	1030	1050	89	95	40-154	2	20	
Toluene	ug/L	2240	400	400	2510	2580	68	87	54-151	3	20	
a,a,a-Trifluorotoluene (S)	%						100	101	80-120			

Date: 06/18/2009 01:59 PM REPORT OF LABORATORY ANALYSIS

Page 9 of 11

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

QC Batch: OEXT/4456 Analysis Method: Extended Range DRO
QC Batch Method: Extended Range DRO Analysis Description: Extended Range DRO GCS

Associated Lab Samples: 4018193001, 4018193002, 4018193003, 4018193004, 4018193005, 4018193006, 4018193007, 4018193008,

4018193009

METHOD BLANK: 168471 Matrix: Water

Associated Lab Samples: 4018193001, 4018193002, 4018193003, 4018193004, 4018193005, 4018193006, 4018193007, 4018193008,

4018193009

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersExtended Range DRO (C10-C40)ug/L<80.0</td>80.006/17/09 12:30

LABORATORY CONTROL SAMPLE & LCSD: 168472 168473 LCS **LCSD** Spike LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers Extended Range DRO (C10-C40) 1600 1500 1680 94 105 75-115 11 20 ug/L

Date: 06/18/2009 01:59 PM

QUALIFIERS

Project: SOUTH CASS LAKE

Pace Project No.: 4018193

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Date: 06/18/2009 01:59 PM

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

REPORT OF LABORATORY ANALYSIS

Page 11 of 11

Type of Ice: Wet

Yes Ono On/A 1.

□N/A 3.

□N/A 4.

□N/A

□N/A

□N/A 8.

□N/A 7.

Xives □No

Yes □No

Yes □No

□Yes XINo

□Yes 🗖No

Yes □No

Blue None

Comments:

Biological Tissue is Frozen: Yes No

Samples on ice, cooling process has begun

Date and Initials of person examining

contents: 6/5/09 MRN

Thermometer Used

Cooler Temperature

Sufficient Volume:

Chain of Custody Present:

Chain of Custody Filled Out:

Chain of Custody Relinquished:

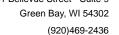
Sampler Name & Signature on COC:

Samples Arrived within Hold Time:

Short Hold Time Analysis (<72hr):

Rush Turn Around Time Requested:

Temp should be above freezing to 6°C


Project Manager Review:	11				Date:	6-5-09
Comments/ Resolution:						
Client Notification/ Resolution: Person Contacted:			Date/	Fime:	Field Data Required?	Y / N
Pace Trip Blank Lot # (if purchased):						
Trip Blank Custody Seals Present	ØQes	□No	□n/a			
Trip Blank Present:	Yes	□No	□n/a	16.		
Headspace in VOA Vials (>6mm):	□Yes	Σίνο	□n/a	15.		
Samples checked for dechlorination:	□Yes		≱ N/A			
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes	□No		Initial when completed	Lot # of added preservative	<u> </u>
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	∑ N/A	y=		
All containers needing preservation have been checked.	□Yes	□No	MN/A	13.		
-Includes date/time/ID/Analysis Matrix:	\overline{U}			12.		
Sample Labels match COC:	_		□N/A			
Filtered volume received for Dissolved tests		□No	~~			
Containers Intact:		□No		10		
-Pace Containers Used:	ĽYes	□No	□n/a			

F-ALLC003rev.3, 11September2006

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Required Client Information: Required Project Information: Invoice Information: Attention: Barry flaw Attention: Barry flaw Attention: Company Name: Enlaridge Energy Supural, W1 54880 Address: Ad	
Address: WOY HAMMOND AND SkillO COPY TO: Company Name: Enlargy REGULATORY AGENCY Address: Address: NPDES X GROUND WATER TO DRINKING	/ATER
SUDY (S. W. (4080) Address: Address: Prince of the supplies of	VATER
Email To: Superior @ Mccanging on Purchase Order No.: Phone: 7/53993254Fax: Project Name: Sinth Cass Lake Pace Project Manager: Site Location MAN	
Phone 7/53993154 Fax: Project Name: Suth Cass Lake Pace Project Manager: Site Location AA+1	
Requested Due Date/TAT: Project Number: Pace Profile #: STATE:	ľ
Requested Analysis Filtered (Y/N)	
Section D Required Client Information MATRIX / CODE COLLECTED Preservatives Required Client Information MATRIX / CODE	
	-
SAMPLE ID (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE Seesidual Chlorine (Y/N) Seesidual Chlorin	
SAMPLE ID Oil Solid Oil Wipe Air AR	3
SAMPLE ID OI Wipe WP Sample IDs MUST BE UNIQUE Tissue Other OT Sample IDs MUST BE UNIQUE Tissue Other OT OT OT OT OT OT OT OT OT O	
Sample IDs MUST BE UNIQUE Tissue TS O O O O O O O O O O O O O O O O O O	
Sample IDs MUST BE UNIQUE Tissue Other Other Dother TIME DATE TIME	
1 MW-1 CO1 WT 61409 4 X XX 1-1/69B, 3	40nlB
2 MW-2 002	
3 MW-4 003 4 MW-6 004	
	
5 MW-7 005 6 MW-8 006	ļ
7 MW-9 007	
8 MW-10 008 J	
0 600 0 000 000	7
10 Trip Blank 010 WT 614/69 4 X X 2-40met-	
	٠
ADDITIONAL COMMENTS RELINQUISHED BY A PFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITION	;
Just Mate 6/4/09 1417 121 6/4/hy 1417	
109 1911 100 PDS 6410 160	
PS/Walto 6/5/09 850 Allowsdates 95/09 850 0-5 4 N	/
SAMPLER NAME AND SIGNATURE	tact
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Description of SAMPLER: Date Signed (MM/DD/YY): 4409 SIGNATURE of SAMPLER: Office of SAMPLER: (MM/DD/YY): 4409	Samples Intact (Y/N)
*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days. F-ALL-Q-020 rev. 07, 15-May-20	

November 11, 2009

Barry Power Natural Resources Engineering Co. 1409 Hammond Avenue Suite 110 Superior, WI 54880

RE: Project: SOUTH CASS LAKE Pace Project No.: 4024604

Dear Barry Power:

Enclosed are the analytical results for sample(s) received by the laboratory on October 29, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten

brian.basten@pacelabs.com Project Manager

Enclosures

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

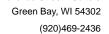
CERTIFICATIONS

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Green Bay Certification IDs

California Certification #: 09268CA Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 11887 New York Certification #: 11888 North Carolina Certification #: 503 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 1241 Bellevue Street Green Bay, WI 54302

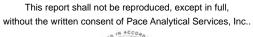

SAMPLE SUMMARY

Project: SOUTH CASS LAKE

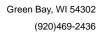
Pace Project No.: 4024604

Lab ID	Sample ID	Matrix	Date Collected	Date Received
4024604001	MW-1	Water	10/26/09 00:00	10/29/09 08:45
4024604002	MW-4	Water	10/26/09 00:00	10/29/09 08:45
4024604003	MW-6	Water	10/26/09 00:00	10/29/09 08:45
4024604004	MW-7	Water	10/26/09 00:00	10/29/09 08:45
4024604005	MW-8	Water	10/26/09 00:00	10/29/09 08:45
4024604006	MW-9	Water	10/26/09 00:00	10/29/09 08:45
4024604007	MW-10	Water	10/26/09 00:00	10/29/09 08:45
4024604008	USGS 1A	Water	10/26/09 00:00	10/29/09 08:45
4024604009	USGS 2A	Water	10/26/09 00:00	10/29/09 08:45
4024604010	USGS 3A	Water	10/26/09 00:00	10/29/09 08:45
4024604011	USGS 4A	Water	10/26/09 00:00	10/29/09 08:45
4024604012	SCL FIELD BLANK	Water	10/26/09 00:00	10/29/09 08:45
4024604013	TRIP BLANK	Water	10/26/09 00:00	10/29/09 08:45

SAMPLE ANALYTE COUNT


Project: SOUTH CASS LAKE

Pace Project No.: 4024604


Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
4024604001	MW-1	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604002	MW-4	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604003	MW-6	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604004	MW-7	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604005	MW-8	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604006	MW-9	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604007	MW-10	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
024604008	USGS 1A	EPA 300.0	DDY	3	PASI-G
			SES		PASI-G

REPORT OF LABORATORY ANALYSIS

Page 4 of 27

SAMPLE ANALYTE COUNT

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
4024604009	USGS 2A	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
4024604010	USGS 3A	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
4024604011	USGS 4A	EPA 300.0	DDY	3	PASI-G
		EPA 8015B Modified	SES	1	PASI-G
		EPA 8021	SES	6	PASI-G
		Extended Range DRO	DAL	1	PASI-G
		HACH 8146	DEY	1	PASI-G
4024604012	SCL FIELD BLANK	EPA 8021	SES	6	PASI-G
4024604013	TRIP BLANK	EPA 8021	SES	6	PASI-G

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: Extended Range DRO
Description: Extended Range DRO GCS

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

11 samples were analyzed for Extended Range DRO. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with Extended Range DRO with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: EPA 8015B Modified

Description: Methane, Ethane, Ethene GCV

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

11 samples were analyzed for EPA 8015B Modified. All samples were received in acceptable condition with any exceptions noted below.

pH: Post-analysis pH measurement indicates insufficient VOA sample preservation.

• MW-4 (Lab ID: 4024604002)

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Snikes

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: **EPA 8021**

Description: 8021 GCV Short List

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

13 samples were analyzed for EPA 8021. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: **HACH 8146 Description:** Iron, Ferrous

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

11 samples were analyzed for HACH 8146. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated more than 15 minutes after sample collection.

- MW-1 (Lab ID: 4024604001)
- MW-10 (Lab ID: 4024604007)
- MW-4 (Lab ID: 4024604002)
- MW-6 (Lab ID: 4024604003)
- MW-7 (Lab ID: 4024604004)
- MW-8 (Lab ID: 4024604005)
- MW-9 (Lab ID: 4024604006)
- USGS 1A (Lab ID: 4024604008)
- USGS 2A (Lab ID: 4024604009)
- USGS 3A (Lab ID: 4024604010) • USGS 4A (Lab ID: 4024604011)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

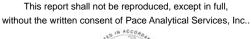
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WET/4893

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 4024604001


M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 228841)
 - Iron, Ferrous
- MSD (Lab ID: 228842)
 - Iron. Ferrous

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: **EPA 300.0** Description: 300.0 IC Anions

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

11 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received outside the recognized method holding time.

- MW-1 (Lab ID: 4024604001)
- MW-10 (Lab ID: 4024604007)
- MW-4 (Lab ID: 4024604002)
- MW-6 (Lab ID: 4024604003)
- MW-7 (Lab ID: 4024604004)
- MW-8 (Lab ID: 4024604005)
- MW-9 (Lab ID: 4024604006)
- USGS 1A (Lab ID: 4024604008) • USGS 2A (Lab ID: 4024604009)
- USGS 3A (Lab ID: 4024604010)
- USGS 4A (Lab ID: 4024604011)

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

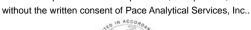
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/5118

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 4024604001,4024604011

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.


- MS (Lab ID: 228297)
 - Nitrate as N
- MSD (Lab ID: 228298)
 - Nitrate as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 10 of 27

Pace Analytical www.pacelabs.com

(920)469-2436

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: EPA 300.0 Description: 300.0 IC Anions

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

PROJECT NARRATIVE

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: NATURAL RESOURCES ENGINEERING CO.

Date: November 11, 2009

General Information:

11 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE


Pace Project No.: 4024604

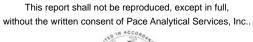
Sample: MW-1	Lab ID: 4024604001	Collected	: 10/26/09	00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Method: Exte	nded Range [ORO Prepa	aration	Method: Extende	d Range DRO		
Extended Range DRO (C10-C40)	<23.1 ug/L	75.5	23.1	1	11/02/09 13:30	11/11/09 08:58		
8021 GCV Short List	Analytical Method: EPA	8021						
Benzene	<0.23 ug/L	1.0	0.23	1		10/31/09 01:19	71-43-2	
Ethylbenzene	<0.40 ug/L	1.0	0.40	1		10/31/09 01:19	100-41-4	
Toluene	<0.36 ug/L	1.0	0.36	1		10/31/09 01:19	108-88-3	
m&p-Xylene	<0.74 ug/L	2.0	0.74	1		10/31/09 01:19	1330-20-7	
o-Xylene	<0.36 ug/L	1.0	0.36	1		10/31/09 01:19	95-47-6	
a,a,a-Trifluorotoluene (S)	102 %	80-120		1		10/31/09 01:19	98-08-8	
Methane, Ethane, Ethene GCV	Analytical Method: EPA	8015B Modifi	ed					
Methane	<0.93 ug/L	2.8	0.93	1		11/06/09 07:31	74-82-8	
Iron, Ferrous	Analytical Method: HAC	H 8146						
Iron, Ferrous	0.024J mg/L	0.050	0.018	1		10/30/09 09:00		H6,M0
300.0 IC Anions	Analytical Method: EPA	300.0						
Nitrate as N	0.20J mg/L	0.40	0.20	1		10/29/09 19:01	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Chloride Sulfate	2.7J mg/L 3.3J mg/L	4.0 4.0	2.0 2.0	1 1		10/29/09 19:01 10/29/09 19:01		
Sample: MW-4	Lab ID: 4024604002	Collected	: 10/26/09	00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Method: Exte	nded Range [ORO Prepa	aration	Method: Extende	d Range DRO		
Extended Range DRO (C10-C40)	<23.1 ug/L	75.5	23.1	1	11/02/09 13:30	11/11/09 09:09		
8021 GCV Short List	Analytical Method: EPA	8021						
	<0.23 ug/L	1.0	0.23	1		10/31/09 01:44	71-43-2	
Benzene	<0.23 ug/L			1		10/31/09 01:44	100-41-4	
	<0.23 ug/L <0.40 ug/L	1.0	0.40					
Ethylbenzene	S	1.0 1.0	0.40	1		10/31/09 01:44	108-88-3	
Ethylbenzene Toluene	<0.40 ug/L					10/31/09 01:44 10/31/09 01:44		
Ethylbenzene Toluene m&p-Xylene	<0.40 ug/L <0.36 ug/L	1.0	0.36	1			1330-20-7	
Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene a,a,a-Trifluorotoluene (S)	<0.40 ug/L <0.36 ug/L <0.74 ug/L	1.0 2.0	0.36 0.74	1 1		10/31/09 01:44	1330-20-7 95-47-6	
Ethylbenzene Toluene m&p-Xylene o-Xylene	<0.40 ug/L <0.36 ug/L <0.74 ug/L <0.36 ug/L	1.0 2.0 1.0 80-120	0.36 0.74 0.36	1 1 1		10/31/09 01:44 10/31/09 01:44	1330-20-7 95-47-6	

Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 27

Project: SOUTH CASS LAKE


Pace Project No.: 4024604

Sample: MW-4	Lab ID:	4024604002	Collected:	10/26/09	9 00:00	Received: 10/29/09 08:45 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
Iron, Ferrous	Analytical	Method: HACH	l 8146							
Iron, Ferrous	<0.018 m	ng/L	0.050	0.018	1		10/30/09 09:00)	H6	
300.0 IC Anions	Analytical	Method: EPA 3	800.0							
Nitrate as N	6.2 m	ng/L	0.40	0.20	1		10/29/09 19:44	14797-55-8	НЗ	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0							
Chloride Sulfate	2.7J m 6.6 m	•	4.0 4.0	2.0 2.0	1 1		10/29/09 19:44 10/29/09 19:44			
Sample: MW-6	Lab ID:	4024604003	Collected:	10/26/09	9 00:00	Received: 10/	/29/09 08:45 M	latrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
Extended Range DRO GCS	Analytical	Method: Exten	ded Range D	RO Prep	aration	Method: Extende	d Range DRO			
Extended Range DRO (C10-C40)	<23.1 u	g/L	75.5	23.1	1	11/02/09 13:30	11/11/09 09:20			
8021 GCV Short List	Analytical	Method: EPA 8	3021							
Benzene	<0.23 u	g/L	1.0	0.23	1		10/30/09 20:10	71-43-2		
Ethylbenzene	<0.40 u	· ·	1.0	0.40	1		10/30/09 20:10			
Toluene	<0.36 u	· ·	1.0	0.36	1		10/30/09 20:10			
m&p-Xylene	<0.74 u	•	2.0	0.74	1		10/30/09 20:10			
o-Xylene a,a,a-Trifluorotoluene (S)	<0.36 ug	· ·	1.0 80-120	0.36	1 1		10/30/09 20:10 10/30/09 20:10			
Methane, Ethane, Ethene GCV		o Method: EPA 8		2d	'		10/30/09 20.10	90-00-0		
Methane	<0.93 u		2.8	0.93	1		11/06/09 07:56	74-82-8		
Iron, Ferrous		Method: HACH		0.00			11,00,00 01100			
Iron, Ferrous	<0.018 m		0.050	0.018	1		10/30/09 09:00)	H6	
300.0 IC Anions	Analytical	Method: EPA 3	300.0							
Nitrate as N	2.0 m		0.40	0.20	1		10/29/09 19:58	14797-55-8	НЗ	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0							
Chloride	2.9J m	ng/L	4.0	2.0	1		10/29/09 19:58	16887-00-6		
Sulfate	5.9 m	•	4.0	2.0	1		10/29/09 19:58			

Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 27

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

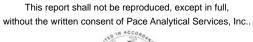
Sample: MW-7	Lab ID: 402460400	4 Collected	d: 10/26/09	00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Method: Ext	ended Range I	DRO Prep	aration	Method: Extende	d Range DRO		
Extended Range DRO (C10-C40)	<23.1 ug/L	75.5	23.1	1	11/02/09 13:30	11/11/09 09:31		
8021 GCV Short List	Analytical Method: EP	A 8021						
Benzene	<0.23 ug/L	1.0	0.23	1		10/30/09 20:35	71-43-2	
Ethylbenzene	<0.40 ug/L	1.0	0.40	1		10/30/09 20:35	100-41-4	
Toluene	<0.36 ug/L	1.0	0.36	1		10/30/09 20:35	108-88-3	
m&p-Xylene	<0.74 ug/L	2.0	0.74	1		10/30/09 20:35	1330-20-7	
o-Xylene	<0.36 ug/L	1.0	0.36	1		10/30/09 20:35	95-47-6	
a,a,a-Trifluorotoluene (S)	101 %	80-120		1		10/30/09 20:35	98-08-8	
Methane, Ethane, Ethene GCV	Analytical Method: EP	A 8015B Modifi	ied					
Methane	<0.93 ug/L	2.8	0.93	1		11/06/09 08:05	74-82-8	
Iron, Ferrous	Analytical Method: HA	CH 8146						
Iron, Ferrous	<0.018 mg/L	0.050	0.018	1		10/30/09 09:00		H6
300.0 IC Anions	Analytical Method: EP	A 300.0						
Nitrate as N	0.61 mg/L	0.40	0.20	1		10/29/09 20:12	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical Method: EP	A 300.0						
Chloride Sulfate	3.1J mg/L 7.8 mg/L	4.0 4.0	2.0 2.0	1 1		10/29/09 20:12 10/29/09 20:12		
Sample: MW-8	Lab ID: 402460400	5 Collected	d: 10/26/09	00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Method: Ext	ended Range I	DRO Prep	aration	Method: Extende	d Range DRO		
Extended Range DRO (C10-C40)	<23.1 ug/L	75.5	23.1	1	11/02/09 13:30	11/11/09 09:43		
8021 GCV Short List	Analytical Method: EP	A 8021						
Benzene	<0.23 ug/L	1.0	0.23	1		10/30/09 21:02	71-43-2	
Ethylbenzene	<0.40 ug/L	1.0	0.40	1		10/30/09 21:02	100-41-4	
Toluene	<0.36 ug/L	1.0	0.36	1		10/30/09 21:02		
m&p-Xylene	<0.74 ug/L	2.0	0.74	1		10/30/09 21:02	1330-20-7	
o-Xylene	<0.36 ug/L	1.0	0.36	1		10/30/09 21:02	95-47-6	
a,a,a-Trifluorotoluene (S)	105 %	80-120		1		10/30/09 21:02	98-08-8	
a,a,a mindorotolache (O)								
Methane, Ethane, Ethene GCV	Analytical Method: EP	A 8015B Modifi	ied					

Date: 11/11/2009 01:39 PM

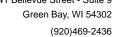
REPORT OF LABORATORY ANALYSIS

Page 15 of 27

Project: SOUTH CASS LAKE


Pace Project No.: 4024604

Sample: MW-8	Lab ID: 4	024604005	Collected:	10/26/09	9 00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Iron, Ferrous	Analytical M	ethod: HACH	l 8146						
Iron, Ferrous	<0.018 mg/	/L	0.050	0.018	1		10/30/09 09:00		H6
300.0 IC Anions	Analytical M	ethod: EPA 3	0.00						
Nitrate as N	0.33J mg/	/L	0.40	0.20	1		10/29/09 20:26	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 3	0.00						
Chloride Sulfate	3.2J mg/ 10 mg/		4.0 4.0	2.0 2.0	1 1		10/29/09 20:26 10/29/09 20:26		
Sample: MW-9	Lab ID: 4	024604006	Collected:	10/26/09	9 00:00	Received: 10/	/29/09 08:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Extended Range DRO GCS	Analytical M	ethod: Exten	ded Range D	RO Prep	aration	Method: Extende	d Range DRO		
Extended Range DRO (C10-C40)	831 ug/l	L	75.5	23.1	1	11/02/09 13:30	11/11/09 09:54		
8021 GCV Short List	Analytical M	ethod: EPA 8	021						
Benzene	<0.23 ug/l		1.0	0.23	1		10/31/09 02:10		
Ethylbenzene	<0.40 ug/l		1.0	0.40	1		10/31/09 02:10		
Toluene m&p-Xylene	< 0.36 ug/l < 0.74 ug/l		1.0 2.0	0.36 0.74	1 1		10/31/09 02:10 10/31/09 02:10		
o-Xylene	<0.36 ug/l		1.0	0.74	1		10/31/09 02:10		
a,a,a-Trifluorotoluene (S)	106 %	_	80-120	0.00	1		10/31/09 02:10		
Methane, Ethane, Ethene GCV	Analytical M	ethod: EPA 8	015B Modifie	ed					
Methane	543 ug/l	L	14.0	4.6	5		11/06/09 09:58	74-82-8	
Iron, Ferrous	Analytical M	ethod: HACH	l 8146						
Iron, Ferrous	0.021J mg/	/L	0.050	0.018	1		10/30/09 09:00		H6
300.0 IC Anions	Analytical M	ethod: EPA 3	0.00						
Nitrate as N	<0.20 mg/	/L	0.40	0.20	1		10/29/09 20:40	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 3	0.00						
Chloride	3.9J mg/	/L	4.0	2.0	1		10/29/09 20:40	16887-00-6	
Sulfate	4.6 mg/	/L	4.0	2.0	1		10/29/09 20:40	14808-79-8	


Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 27

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Sample: MW-10	Lab ID:	4024604007	Collected:	10/26/09	00:00	Received: 10	/29/09 08:45 N	/latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Extended Range DRO GCS	Analytical I	Method: Exten	ded Range D	RO Prep	aration I	Method: Extende	ed Range DRO		
Extended Range DRO (C10- C40)	22400 ug	/L	1510	463	20	11/02/09 13:30	11/11/09 11:01		
8021 GCV Short List	Analytical I	Method: EPA 8	8021						
Benzene	159 ug	/L	1.0	0.23	1		10/31/09 02:3	6 71-43-2	
Ethylbenzene	5.6 ug	/L	1.0	0.40	1		10/31/09 02:3	6 100-41-4	
Toluene	<0.36 ug	/L	1.0	0.36	1		10/31/09 02:3	6 108-88-3	
m&p-Xylene	3.0 ug	/L	2.0	0.74	1		10/31/09 02:3	6 1330-20-7	
o-Xylene	<0.36 ug	/L	1.0	0.36	1		10/31/09 02:3	6 95-47-6	
a,a,a-Trifluorotoluene (S)	103 %		80-120		1		10/31/09 02:3	6 98-08-8	
Methane, Ethane, Ethene GCV	Analytical I	Method: EPA 8	015B Modifie	d					
Methane	5100 ug	/L	140	46.3	50		11/06/09 10:07	7 74-82-8	
Iron, Ferrous	Analytical I	Method: HACH	ł 8146						
Iron, Ferrous	1.3 mg	g/L	0.25	0.090	5		10/30/09 09:0	0	H6
300.0 IC Anions	Analytical I	Method: EPA 3	300.0						
Nitrate as N	0.30J mg	g/L	0.40	0.20	1		10/29/09 21:2	3 14797-55-8	H3
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	300.0						
Chloride Sulfate	3.2J mg 2.9J mg	•	4.0 4.0	2.0 2.0	1 1		10/29/09 21:2: 10/29/09 21:2:		
Sample: USGS 1A	Lab ID:	4024604008	Collected:	10/26/09	9 00:00	Received: 10	/29/09 08:45 M	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Extended Range DRO GCS						· ·			-
Extended Range DRO (C10-	4930 ug		267	81.7	3	Method: Extende 11/02/09 13:30	_	,	
C40)	4930 ug	/ L	207	01.7	3	11/02/09 13.30	11/11/09 11.12	-	
8021 GCV Short List	Analytical I	Method: EPA 8	3021						
Benzene	776 ug	/L	5.0	1.1	5		10/31/09 00:0	1 71-43-2	
Ethylbenzene	142 ug	/L	5.0	2.0	5		10/31/09 00:0	1 100-41-4	
Toluene	<1.8 ug	/L	5.0	1.8	5		10/31/09 00:0	1 108-88-3	
m&p-Xylene	<3.7 ug	/L	10.0	3.7	5		10/31/09 00:0	1 1330-20-7	
o-Xylene	<1.8 ug		5.0	1.8	5		10/31/09 00:0	1 95-47-6	
a,a,a-Trifluorotoluene (S)	102 %		80-120		5		10/31/09 00:0	1 98-08-8	
Methane, Ethane, Ethene GCV	Analytical I	Method: EPA 8	8015B Modifie	d					

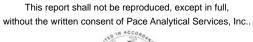
Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 27

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE


Pace Project No.: 4024604

Sample: USGS 1A	Lab ID: 4024	604008 Collecte	d: 10/26/0	9 00:00	Received: 10	latrix: Water		
Parameters	Results Ur	nits LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Iron, Ferrous	Analytical Metho	od: HACH 8146						
Iron, Ferrous	<0.018 mg/L	0.050	0.018	1		10/30/09 09:00)	H6
300.0 IC Anions	Analytical Metho	od: EPA 300.0						
Nitrate as N	<0.20 mg/L	0.40	0.20	1		10/29/09 21:37	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 300.0						
Chloride Sulfate	3.5J mg/L 2.1J mg/L	4.0 4.0	2.0 2.0	1 1		10/29/09 21:37 10/29/09 21:37		
Sample: USGS 2A	Lab ID: 4024	604009 Collecte	d: 10/26/0	9 00:00	Received: 10	0/29/09 08:45 N	fatrix: Water	
Parameters	Results Ur	nits LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
Extended Range DRO GCS	Analytical Metho	od: Extended Range	DRO Prep	aration	Method: Extende	ed Range DRO		
Extended Range DRO (C10-C40)	5520 ug/L	302	92.5	4	11/02/09 13:30	11/11/09 11:23		
8021 GCV Short List	Analytical Metho	od: EPA 8021						
Benzene	705 ug/L	5.0	1.1	5		11/02/09 08:56	71-43-2	
Ethylbenzene	<2.0 ug/L	5.0	2.0	5		11/02/09 08:56		
Toluene	<1.8 ug/L	5.0	1.8	5		11/02/09 08:56		
m&p-Xylene	<3.7 ug/L	10.0	3.7	5		11/02/09 08:56		
o-Xylene a,a,a-Trifluorotoluene (S)	<1.8 ug/L 93 %	5.0 80-120	1.8	5 5		11/02/09 08:56 11/02/09 08:56		
Methane, Ethane, Ethene GCV		od: EPA 8015B Modi	fied	5		11/02/09 06.50	90-00-0	
Methane	5480 ug/L	140	46.3	50		11/06/09 10:24	1 74-82-8	
Iron, Ferrous	Analytical Metho		40.0	00		11/00/00 10.2	14020	
Iron, Ferrous	<0.018 mg/L	0.050	0.018	1		10/30/09 09:00)	H6
300.0 IC Anions	Analytical Metho		-					
Nitrate as N	<0.20 mg/L	0.40	0.20	1		10/29/09 21:51	14797-55-8	НЗ
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 300.0						
Chloride	3.7J mg/L	4.0	2.0	1		10/29/09 21:5	16887-00-6	
Sulfate	2.5J mg/L	4.0	2.0	1		10/29/09 21:51		

Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 27

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Sample: USGS 3A	Lab ID: 4	024604010	Collected:	10/26/09	00:00	Received: 10/	29/09 08:45 Ma	Matrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
Extended Range DRO GCS	Analytical M	ethod: Exter	ided Range D	RO Prep	aration	Method: Extende	d Range DRO			
Extended Range DRO (C10- C40)	4060 ug/	L	229	70.0	3	11/02/09 13:30	11/11/09 11:35			
3021 GCV Short List	Analytical M	ethod: EPA 8	3021							
Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene a,a,a-Trifluorotoluene (S)	147 ug/ 0.74J ug/ <0.36 ug/ 1.5J ug/ <0.36 ug/ 102 %	L L L	1.0 1.0 1.0 2.0 1.0 80-120	0.23 0.40 0.36 0.74 0.36	1 1 1 1 1		10/30/09 21:53 10/30/09 21:53 10/30/09 21:53 10/30/09 21:53 10/30/09 21:53 10/30/09 21:53	100-41-4 108-88-3 1330-20-7 95-47-6		
Methane, Ethane, Ethene GCV	Analytical M	ethod: EPA 8	3015B Modifie	ed						
Methane	3240 ug/	L	70.0	23.2	25		11/06/09 10:33	74-82-8		
Iron, Ferrous	Analytical M	ethod: HACI	H 8146							
Iron, Ferrous	<0.018 mg/	/L	0.050	0.018	1		10/30/09 09:00		H6	
300.0 IC Anions	Analytical M	ethod: EPA	300.0							
Nitrate as N	<0.20 mg	/L	0.40	0.20	1		10/29/09 22:06	14797-55-8	НЗ	
300.0 IC Anions 28 Days	Analytical M	ethod: EPA	300.0							
Chloride Sulfate	3.5J mg. 2.3J mg.		4.0 4.0	2.0 2.0	1 1		10/29/09 22:06 10/29/09 22:06			
Sample: USGS 4A	Lab ID: 4	024604011	Collected:	10/26/09	9 00:00	Received: 10/	29/09 08:45 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
Extended Range DRO GCS	Analytical M	ethod: Exter	ided Range D	RO Prep	aration	Method: Extende	d Range DRO			
Extended Range DRO (C10- C40)	1670 ug/	L	83.3	25.5	1	11/02/09 13:30	11/11/09 10:50			
8021 GCV Short List	Analytical M	ethod: EPA 8	3021							
Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene a,a,a-Trifluorotoluene (S)	13.8 ug/ <0.40 ug/ <0.36 ug/ <0.74 ug/ <0.36 ug/ 102 %	L L L	1.0 1.0 1.0 2.0 1.0 80-120	0.23 0.40 0.36 0.74 0.36	1 1 1 1 1		10/30/09 22:18 10/30/09 22:18 10/30/09 22:18 10/30/09 22:18 10/30/09 22:18 10/30/09 22:18	100-41-4 108-88-3 1330-20-7 95-47-6		
Methane, Ethane, Ethene GCV	Analytical M	ethod: EPA 8	3015B Modifie	ed						
Methane	665 ug/	ı	14.0	4.6	5		11/06/09 10:42	7/1-82-8		

Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 27

ANALYTICAL RESULTS

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Sample: USGS 4A	Lab ID:	4024604011	Collected	: 10/26/0	9 00:00	Received: 10)/29/09 08:45 N	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Iron, Ferrous	Analytica	Method: HACH	H 8146						
Iron, Ferrous	<0.018 r	ng/L	0.050	0.018	1		10/30/09 09:00)	H6
300.0 IC Anions	Analytica	Method: EPA 3	300.0						
Nitrate as N	0.20J r	ng/L	0.40	0.20	1		10/29/09 22:20	14797-55-8	H3,M0
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0						
Chloride	3.3J r	ng/L	4.0	2.0	1		10/29/09 22:20	16887-00-6	
Sulfate	4.2 r	ng/L	4.0	2.0	1		10/29/09 22:20	14808-79-8	
Sample: SCL FIELD BLANK	Lab ID:	4024604012	Collected	: 10/26/0	9 00:00	Received: 10	0/29/09 08:45 M	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8021 GCV Short List	Analytica	Method: EPA 8	3021						
Benzene	<0.23 (ıg/L	1.0	0.23	1		10/30/09 22:44	71-43-2	
Ethylbenzene	<0.40 \t	ıg/L	1.0	0.40	1		10/30/09 22:44	100-41-4	
Toluene	<0.36 ≀	ıg/L	1.0	0.36	1		10/30/09 22:44	108-88-3	
m&p-Xylene	<0.74 (2.0	0.74	1		10/30/09 22:44	1330-20-7	
o-Xylene	<0.36 (ıg/L	1.0	0.36	1		10/30/09 22:44	95-47-6	
a,a,a-Trifluorotoluene (S)	100 9	%	80-120		1		10/30/09 22:44	98-08-8	
Sample: TRIP BLANK	Lab ID:	4024604013	Collected	: 10/26/0	9 00:00	Received: 10	0/29/09 08:45 M	latrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8021 GCV Short List	Analytica	Method: EPA 8	3021						
Benzene	<0.23 (ıg/L	1.0	0.23	1		10/30/09 23:09	71-43-2	
Ethylbenzene	<0.40 \(-	1.0	0.40	1		10/30/09 23:09	100-41-4	
Toluene	<0.36 ≀	ıg/L	1.0	0.36	1		10/30/09 23:09	108-88-3	
m&p-Xylene	<0.74 \	ıg/L	2.0	0.74	1		10/30/09 23:09	1330-20-7	
o-Xylene	<0.36 ≀	ıg/L	1.0	0.36	1		10/30/09 23:09	95-47-6	
a,a,a-Trifluorotoluene (S)	102 9	/ _	80-120		1		10/30/09 23:09	0 00 00	

Date: 11/11/2009 01:39 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 27

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Date: 11/11/2009 01:39 PM

QC Batch: GCV/4209 Analysis Method: EPA 8021
QC Batch Method: EPA 8021 Analysis Description: 8021 GCV BTEX

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011, 4024604012, 4024604013

METHOD BLANK: 227833 Matrix: Water

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011, 4024604012, 4024604013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	<0.23	1.0	10/30/09 18:53	
Ethylbenzene	ug/L	< 0.40	1.0	10/30/09 18:53	
m&p-Xylene	ug/L	< 0.74	2.0	10/30/09 18:53	
o-Xylene	ug/L	< 0.36	1.0	10/30/09 18:53	
Toluene	ug/L	< 0.36	1.0	10/30/09 18:53	
a,a,a-Trifluorotoluene (S)	%	102	80-120	10/30/09 18:53	

LABORATORY CONTROL SAM	PLE & LCSD: 227834		22	27835						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	20.8	20.8	104	104	80-120	.2	20	
Ethylbenzene	ug/L	20	19.4	21.4	97	107	80-120	10	20	
m&p-Xylene	ug/L	40	37.8	42.0	95	105	80-120	10	20	
o-Xylene	ug/L	20	19.1	21.1	95	106	80-120	10	20	
Toluene	ug/L	20	19.9	21.2	99	106	80-120	7	20	
a,a,a-Trifluorotoluene (S)	%				102	107	80-120			

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 22849	2		228493							
	4	024604008	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	776	100	100	816	837	40	61	28-167	3	20	
Ethylbenzene	ug/L	142	100	100	245	232	103	90	51-151	6	20	
m&p-Xylene	ug/L	<3.7	200	200	220	206	110	103	23-175	7	20	
o-Xylene	ug/L	<1.8	100	100	107	102	107	102	40-154	5	20	
Toluene	ug/L	<1.8	100	100	107	104	107	104	54-151	3	20	
a,a,a-Trifluorotoluene (S)	%						103	100	80-120			

REPORT OF LABORATORY ANALYSIS

Page 21 of 27

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

QC Batch: WETA/5118 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

METHOD BLANK: 228293 Matrix: Water

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate as N mg/L <0.20 0.40 10/29/09 18:33

LABORATORY CONTROL SAMPLE: 228294

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 2 2.1 Nitrate as N 106 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 228295 228296

MS MSD MSD 4024604001 Spike Spike MS MS MSD % Rec Max % Rec Parameter Conc. Result % Rec RPD RPD Units Result Conc. Result Limits Qual

Nitrate as N mg/L 0.20J 2 2 2.2 2.2 98 100 90-110 1 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 228297 228298

MS MSD

4024604011 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Conc. % Rec % Rec Limits RPD RPD Qual Result Conc. Result Result Nitrate as N mg/L 0.20J 2 2 1.9 2.0 86 88 90-110 20 M0

Date: 11/11/2009 01:39 PM REPORT OF LABORATORY ANALYSIS

Page 22 of 27

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

QC Batch: WETA/5119 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

METHOD BLANK: 228299 Matrix: Water

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

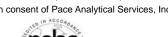
4024604009, 4024604010, 4024604011

Blank Reporting Parameter Units Limit Qualifiers Result Analyzed Chloride mg/L <2.0 4.0 10/29/09 18:33 Sulfate <2.0 10/29/09 18:33 mg/L 4.0

LABORATORY CONTROL SAMPLE: 228300

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride Sulfate	mg/L mg/L	20 20	20.2	101 103	90-110 90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 228301 228302


Parameter	40 Units	024604001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	2.7J	20	20	20.9	21.2	91	92	90-110	1	20	
Sulfate	mg/L	3.3J	20	20	22.4	22.6	96	97	90-110	.8	20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 228303 228304

	4024604011		MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.3J	20	20	21.6	22.0	91	93	90-110	2	20	
Sulfate	mg/L	4.2	20	20	23.7	24.0	97	99	90-110	2	20	

Date: 11/11/2009 01:39 PM REPORT OF LABORATORY ANALYSIS

Page 23 of 27

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

QC Batch: WET/4893 Analysis Method: HACH 8146
QC Batch Method: HACH 8146 Analysis Description: Iron, Ferrous

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

METHOD BLANK: 228839 Matrix: Water

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Iron, Ferrous mg/L <0.018 0.050 10/30/09 09:00

LABORATORY CONTROL SAMPLE: 228840

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

Iron, Ferrous mg/L .6 0.65 109 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 228841 228842

MS MSD

4024604001 Spike Spike MS MSD MS MSD % Rec Max % Rec RPD RPD Parameter Conc. Result Result % Rec Limits Units Result Conc. Qual Iron, Ferrous 0.024J .6 .6 0.41 0.45 64 80-120 10 20 M0 mg/L

Date: 11/11/2009 01:39 PM

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Extended Range DRO (C10-C40)

Parameter

Date: 11/11/2009 01:39 PM

QC Batch: OEXT/6017 Analysis Method: Extended Range DRO
QC Batch Method: Extended Range DRO Analysis Description: Extended Range DRO GCS

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

METHOD BLANK: 229454 Matrix: Water

ug/L

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

<24.5

4024604009, 4024604010, 4024604011

Units

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Conc.

LABORATORY CONTROL SAMPLE & LCSD: 229455 229456
Spike LCS LCSD LCS LCSD % Rec Max

Result

80.0

Result

11/11/09 08:47

% Rec

Limits

RPD

RPD

Qualifiers

% Rec

Extended Range DRO (C10-C40) ug/L 1600 1570 1620 98 101 75-115 3 20

QUALITY CONTROL DATA

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

Methane

QC Batch: GCV/4226 Analysis Method: EPA 8015B Modified

QC Batch Method: EPA 8015B Modified Analysis Description: Methane, Ethane, Ethene GCV

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

METHOD BLANK: 229578 Matrix: Water

Associated Lab Samples: 4024604001, 4024604002, 4024604003, 4024604004, 4024604005, 4024604006, 4024604007, 4024604008,

4024604009, 4024604010, 4024604011

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers ug/L <0.93 2.8 11/06/09 05:54

LABORATORY CONTROL SAMPLE & LCSD: 229579 229580

LCS Spike LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 26.4 2 Methane 28.4 27.0 93 70-130 20 ug/L 95

Methane ug/L 28.4 26.4 27.0 93 95 70-130 2 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 231660 231661

MS MSD Spike MS MSD MS MSD 4024473017 Spike % Rec Max % Rec RPD RPD Parameter Conc. Result % Rec Limits Units Result Conc. Result Qual Methane ug/L 2.8 U 28.4 28.4 27.2 27.8 96 98 42-169 2 20

Date: 11/11/2009 01:39 PM

QUALIFIERS

Project: SOUTH CASS LAKE

Pace Project No.: 4024604

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 11/11/2009 01:39 PM

H3	Sample was received outside the recognized method holding time.
H6	Analysis initiated more than 15 minutes after sample collection.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

pH Post-analysis pH measurement indicates insufficient VOA sample preservation.

REPORT OF LABORATORY ANALYSIS

Page 27 of 27

Pace Analytical*

Sample Condition Upon Receipt

Client Name	: NXE			Pr	oject # 4524664
Courier: Fed Ex T UPS T USPS T	Client Co	mmerc	cial T Pace	- Other	
Tracking #:	*,>				
Custody Seal on Cooler/Box Present: yes	no	Seals	intact: yes	no	Optional " " : " : " : " : " : " : " : " : " :
Custody Seal on Samples Present: yes	no	Seals	intact: yes	T no	fojjulijaja (j. 17.2.)
Packing Material: Bubble Wrap Bub	ble Bags	Non	e Other		Proj. Name:
Thermometer Used	Type of Ice:	: We	Blue Dry None	T	Samples on ice, cooling process has begun
Cooler Temperature	Biological 7	Γissue	is Frozen: Tyes	3	
Temp Blank Present: X yes T no			no		Person examining contents:
Temp should be above freezing to 6°C for all sample exc Biota Samples should be received ≤ 0°C.	cept Biota.		Comments:		Date: 1004 09 Initials: AE
Chain of Custody Present:	Öyes □No	□n/a	1.		
Chain of Custody Filled Out:	Yes □No	□n/a	2.		
Chain of Custody Relinquished:	∑Yes □No	□N/A	3.		
Sampler Name & Signature on COC:	Yes □No	□n/a	4.		
Samples Arrived within Hold Time:	Des Duo	□n/a	5.OK to re	un 1	20st hold per BH 10-29-09
Short Hold Time Analysis (<72hr):			6. Nitrate 1		
Rush Turn Around Time Requested:	□Yes \ No	-			
Sufficient Volume:	Dyes □No	□N/A	8	- ,	
Correct Containers Used:	Dixes □No	□n/a	9.		
-Pace Containers Used:	☐ Kes ☐ No	□n/a			
Containers Intact:	□Yes □No.	□N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No	□n/a	11.		
Sample Labels match COC:	∑Yes □No	□n/a	12. NO tiv	MB	10/20/00
-Includes date/time/ID/Analysis Matrix:	W	_	·		10/0
All containers needing preservation have been checked.	□Yes □No	N/A	13		
All containers needing preservation are found to be in		7,	10.		
compliance with EPA recommendation.	□Yes □No	Dhya	laisiatta a		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No		Initial when completed		Lot # of added preservative
Samples checked for dechlorination:	□Yes □No	AND	14.		
Headspace in VOA Vials (>6mm):	□Yes QNo	□N/A	15.		
Trip Blank Present:	Yes □No	□n/a	16.		
Trip Blank Custody Seals Present	□Yes □No	□n/a	ė.		
Pace Trip Blank Lot # (if purchased):	_				
Client Notification/ Resolution:					Field Data Required? Y / N
Person Contacted:	 	_Date/	Time:		····
Comments/ Resolution:					
		•			
Project Manager Review:				-	Date: 10-29-09
Note: Whenever there is a discrepancy affecting North Carolina c incorrect preservative, out of temp, incorrect containers)	ompliande sample	s, a copy	of this form will be sent t	to the No	rth Carolina DEHNR Certification Office (i.e out of hold,

F-ALL-C-006-Rev.04 (12Aug2009) SCUR Form